
 

           

 

 
 

 

AUDITOR – GA 687367 

Advanced Multi-Constellation EGNSS Augmentation and Monitoring Network and its 

Application in Precision Agriculture 

 

D2.2 Version 1.0 

Subsystem specification 

 

Contractual Date of Delivery: M6 (Jun, 2016) 

Actual Date of Delivery: 

Editor: Jacobo Dominguez (ACORDE)  

Author(s): Esther López, Jacobo Domínguez, David Abia, José Manuel Sánchez 

(ACORDE); Carles Fernandez-Prades, Marc Majoral, Javier Arribas 

(CTTC); Alberto García Rigo, Manuel Hernández-Pajares (UPC);  

Work package:  WP2 - Receiver architecture definition 

Security: CO 

Nature: R 

Version:  1.0  

Total number of pages: 62 

 

Abstract: 

This document contains the internal details of the different subsystems that are part of the 

AUDITOR system architecture which foundations were introduced in D2.1 Architecture 

definition. A custom RF Front-End and a commercial ARM/FPGA processing platform provide 

the base hardware to implement a flexible GNSS receiver. Multiple low level modules and 

higher level algorithms are presented in this document which integrated into the hardware 

platforms provide a flexible high performance open GNSS receiver supporting multi-channel 

and Galileo/GPS bands (E1/L1, L2 o E5a/L5). Moreover, the embedded subsystem is supported 

by remote cloud services to obtain ionospheric data corrections and extends its user services. 



AUDITOR  D2.2 Version 1.0 

 Page 2 (62) 

Document Control 

Version Details of Change Author Approved Date 

1.0 First complete version of the document EL EL 30/06/2016 



AUDITOR  D2.2 Version 1.0 

 Page 3 (62) 

Executive Summary 

This document extends D2.1 Architecture Definition adding detailed information about the different 

modules and interfaces that are embedded into the proposed AUDITOR GNSS receiver architecture. 

The two core hardware elements included in the architecture are the RF front-end module and the 

signal processing board based on the Zynq-7000 All Programmable SoC. Additional cloud computing 

platforms are integrated into the system either to obtain ionospheric corrections or to provide 

valuable web users services. 

The front-end acquires the GNSS signals from two simultaneous channels and provides the samples 

to the signal processing board via a high performance parallel bus.  

The processing platform implements an efficient real-time pre-processing of the GNSS samples in its 

FPGA architecture while higher level algorithms and applications are developed in its ARM core to 

offer high precision positioning features. 

Several internal and external interfaces are defined into this document to provide the needed 

interconnection between the previous modules and subsystems. These include the necessary 

software interfaces and messages formats using custom or standard communication protocols.  

 

 



AUDITOR  D2.2 Version 1.0 

 Page 4 (62) 

Authors 

Partner Name e-mail 

ACORDE Esther López  esther.lopez@acorde.com  

 Jacobo Domínguez                jacobo.dominguez@acorde.com 

 David Abia                           david.abia@acorde.com   

 José Manuel Sánchez  josemanuel.sanchez@acorde.com  

CTTC Carles Fernández-Prades   carles.fernandez@cttc.es 

 Marc Majoral          marc.majoral@cttc.es 

 Javier Arribas  javier.arribas@cttc.es  

UPC Alberto García Rigo           alberto.garcia.rigo@upc.edu  

 Manuel Hernández-Pajares manuel.hernandez@upc.edu 

 

mailto:jacobo.dominguez@acorde.com
mailto:david.abia@acorde.com
mailto:josemanuel.sanchez@acorde.com
mailto:carles.fernandez@cttc.es
mailto:marc.majoral@cttc.es
mailto:javier.arribas@cttc.es
mailto:alberto.garcia.rigo@upc.edu
mailto:manuel.hernandez@upc.edu


AUDITOR  D2.2 Version 1.0 

 Page 5 (62) 

Table of Contents 

Document Control .................................................................................................................................... 2 

Executive Summary .................................................................................................................................. 3 

Authors ..................................................................................................................................................... 4 

Table of Contents ..................................................................................................................................... 5 

List of tables ............................................................................................................................................. 6 

List of Figures ............................................................................................................................................ 7 

List of Acronyms and Abbreviations ......................................................................................................... 8 

1. Introduction .....................................................................................................................................10 

2. GNSS Front-End Module ..................................................................................................................11 

2.1.1 Fixed Band .......................................................................................................................12 

2.1.2 Configurable Band ...........................................................................................................13 

2.1.3 M&C commands ..............................................................................................................14 

3. Signal Processing ..............................................................................................................................15 

3.1 Zynq Platform..........................................................................................................................15 

3.2 Zynq Processing Logic (PL) ......................................................................................................17 

3.2.1 Front-end logic ................................................................................................................17 

3.2.2 Hardware accelerators ....................................................................................................19 

 Buffer control ........................................................................................................22 3.2.2.1

 Signal Acquisition ..................................................................................................23 3.2.2.2

 Signal Tracking ......................................................................................................25 3.2.2.3

3.3 FPGA-ARM interface (AXI) ......................................................................................................27 

3.4 Zynq Processing System (PS) ...................................................................................................29 

3.4.1 Front-end driver ..............................................................................................................29 

3.4.2 GNSS-SDR module ...........................................................................................................30 

 The Control Plane ..................................................................................................31 3.4.2.1

 The Signal Processing Plane ..................................................................................33 3.4.2.2

 Example: dual-frequency receiver architecture ...................................................36 3.4.2.3

3.4.3 iBOGART user net and Client PVT Solver ........................................................................39 

 iBOGART-user-net and PVT Inputs ........................................................................40 3.4.3.1

 iBOGART-user-net and PVT baseline core: AUDITOR RTKLIB ...............................40 3.4.3.2

 iBOGART-user-net and PVT Outputs .....................................................................43 3.4.3.3

3.4.4 System control ................................................................................................................43 

 Operating system ..................................................................................................44 3.4.4.1

 Receiver configuration ..........................................................................................46 3.4.4.2

 Startup scripts and status monitoring ..................................................................46 3.4.4.3

4. iBOGART Central Processing Facility (iBOGART Cloud) ...................................................................47 



AUDITOR  D2.2 Version 1.0 

 Page 6 (62) 

4.1 CPF real time implementation ................................................................................................47 

4.1.1 Software structure ..........................................................................................................47 

 WARTK-RT CPF main components description .....................................................48 4.1.1.1

 WARKT-RT Inputs ..................................................................................................50 4.1.1.2

 Semi-static Inputs .................................................................................................52 4.1.1.3

 Streamed and Dynamic Inputs ..............................................................................53 4.1.1.4

 WARTK-RT Outputs ...............................................................................................53 4.1.1.5

 WARTK correction message requirements ...........................................................54 4.1.1.6

 WARTK CPF messages dissemination: FTP/RTCM ................................................59 4.1.1.7

5. Conclusion ........................................................................................................................................61 

6. References .......................................................................................................................................62 

 

List of tables 

Table 2.1: Front End Specification ..........................................................................................................11 

Table 2.3: FE M&C commands ...............................................................................................................14 

Table 3.1: Zynq SoC components ...........................................................................................................15 

Table 3.2: Use of the hardware accelerators to locate and track the GNSS satellites. ..........................21 

Table 3.3: Processing of the received samples and behaviour of the input sample counter in the 

processing module ...............................................................................................................24 

Table 3.4: Production of output data in the acquisition modules .........................................................24 

Table 3.5: Processing of the input samples in the channel modules .....................................................26 

Table 3.6: Status of the correlator .........................................................................................................26 

Table 3.7: Interfaces between the PS and the PL ...................................................................................27 

Table 3.8: Characteristics of the various AXI interfaces .........................................................................27 

Table 3.9: Theoretical bandwidth of PS-PL and PS memory interfaces (from Xilinx) ............................28 

Table 3.10: Front-end logic commands ..................................................................................................30 

Table 3.11: Configuration file syntax: setting parameters of the SignalSource module ...............31 

Table 3.12: Configuration file syntax: setting the implementation of the 

SignalConditioner module ........................................................................................31 

Table 3.13: Configuration example for a dual-band receiver. ...............................................................36 

Table 3.14: RTKLIB scripts and number of lines .....................................................................................40 

Table 3.15: Ionospheric corrections in within ionocorr function ...........................................................41 

Table 3.16: ZedBoard configurations and firmware versions ................................................................45 

Table 4.1: “OB1” message field description ...........................................................................................54 

Table 4.2: “OB1” message example .......................................................................................................55 

Table 4.3: “S3C” message field description ............................................................................................56 

Table 4.4: “S3C” message example ........................................................................................................56 



AUDITOR  D2.2 Version 1.0 

 Page 7 (62) 

Table 4.5: “DSM” message field description ..........................................................................................57 

Table 4.6: “DSM” message example ......................................................................................................59 

Table 4.7: Example for block 'VTEC' carrying ionospheric corrections ..................................................59 

List of Figures 

Figure 1.1: System Architecture .............................................................................................................10 

Figure 2.1: Front-End interfaces .............................................................................................................11 

Figure 2.2: Single E1/L1 bands ...............................................................................................................13 

Figure 2.3: Single L2C or E5a/L5 band ....................................................................................................13 

Figure 3.1: Overview of AUDITOR’s digital processing platform ............................................................16 

Figure 3.2: FE logic schema ....................................................................................................................17 

Figure 3.3: ZedBoard Pmod pinout. .......................................................................................................18 

Figure 3.4: FMC XM105 Debug Card. .....................................................................................................18 

Figure 3.5: Block diagram of the PL ........................................................................................................20 

Figure 3.6: Correlation Module block diagram ......................................................................................25 

Figure 3.7: APU (Application Processor Unit) system view diagram ......................................................29 

Figure 3.8: General block diagram of a GNSS receiver. ..........................................................................33 

Figure 3.9: Receiver’s class hierarchy. ....................................................................................................35 

Figure 3.10: General interface for signal processing blocks. ..................................................................36 

Figure 3.11: Simplified block diagram of a dual-band receiver of GPS L1 C/A and GPS L2C (M) 

signals. ..................................................................................................................................39 

Figure 4.1: WARTK-RT software data flow diagram ...............................................................................51 



AUDITOR  D2.2 Version 1.0 

 Page 8 (62) 

List of Acronyms and Abbreviations 

Term Description 

ACP Accelerator Coherency Port 

ADC Analog-to-Digital Conversion 

AHB Advanced High-performance Bus 

AMBA Advanced Microcontroller Bus Architecture 

APB Advanced Peripheral Bus 

APU Application Processor Unit 

ASSP Application Specific Standard Product 

AXI Advanced eXtensible Interface 

CAN Controller Area Network 

CLB Configurable Logic Block 

CPU Central Processing Unit 

DAP Debug Access Port 

DDR Double Data Rate 

DevC Device Configuration interface 

DMA Direct Memory Access 

DMIPS Dhrystone Million Instructions Per Second 

DSP Digital Signal Processor 

ECC Error Correction Checking 

EHCI Enhanced Host Controller Interface 

EMIO Extendable Multiplexed Input / Output 

FE Front End 

FPGA Field Programmable Gate Array 

GIC General interrupt controller 

GMII Gigabit Media-Independent Interface 

GNSS Global Navigation Satellite System 

IOP Input / Output Peripherals 

IP Intellectual Property 

IRQ Interrupt ReQuest 

LPDDR Low Power Double Data Rate 



AUDITOR  D2.2 Version 1.0 

 Page 9 (62) 

Term Description 

LUT Look-Up Table 

MAC Media Access Control 

MIO Multiuse Input / Output 

MMU Memory Management Unit 

OCM On-Chip Memory 

OTG On-The-Go 

PCAP Processor Configuration Access Port 

PL Programmable Logic 

PS Processing System 

RAM Random Access Memory 

RGMII Reduced Gigabit Media-Independent Interface 

ROM Read Only Memory 

SGMII Serial Gigabit Media-Independent Interface 

SoC System-on-Chip 

SPI Serial Peripheral Interface 

SRAM Static Random Access Memory 

SWDT System Watch Dog Timer 

TTC Triple Timers / Counters 

UART Universal Asynchronous Receiver-Transmitter 

ULPI UTMI+ Low Pin Interface 

UTMI USB 2.0 Transceiver Macrocell Interface 

VFPU Vector Floating Point Unit 

WDT Watch Dog Timers 

 



AUDITOR  D2.2 Version 1.0 

 Page 10 (62) 

1. Introduction 

In previous deliverable D2.1 [1] the overall architecture for the AUDITOR system has been presented. 

This architecture is summarized in Figure 1.1, that was already introduced in [1] and it’s included 

here for convenience: 

 

Figure 1.1: System Architecture 

The AUDITOR system is composed of a custom RF front-end module, a processing platform (Zynq 

Board) and several cloud systems to either consume ionospheric corrections or provide user 

services. In this deliverable the subsystem specification for each module will be detailed as well as, 

the multiple internal/external interfaces and message formats that supports the actual 

interconnection of these modules. This document establishes the initial subsystem specification but 

is subjected to changes as the project implementation advances. 

  

Zynq Processing System (ARM)

Zynq BOARDZynq BOARD

FRONT-END Module
Zynq Processing Logic (FPGA)

High Accuracy Software Module

FRONT-END
Receiver

NETWORK SOFTWARE
AGRICULTURE TOOLS

 AND SERVICES

NMEA

U
SB

 t
o

 C
A

N
B

u
s

C
o

n
ve

rt
er ISOBUS GEO

FRAMES

WP3 (ACORDE)

WP5 (UPC) WP7 (DRAXIS)

WP3 (ACORDE/CTTC)

Control

A
X

I I
n

te
rf

ac
e

A
X

I P
er

ip
h

er
alSignal 

Processing

GNSS-SDR
Original
Modules

- GNSS filter
- RT GNSS data
- GNSS prefit

GNSS Comm. (FTP/NTRIP)

IS
O

B
U

S 
C

LI
EN

T 
(B

U
IL

D
 G

EO
 F

R
A

M
ES

)Tools & Services Comm.

data

Services Support Module:
- Data Analysis Service
- Variable Rate Application
- Android App

Front-End Config
Interface

A
X

I D
ri

ve
r

U
A

R
T/

U
SB

/E
th

er
n

et
/S

P
I

User Interface

UserUser

RINEX/RTCM3

Control & 
User 

Interface
Module

Front-End 
Driver

USB 3G UMTS
DONGLE

USB 3G UMTS
DONGLE

iBogart
Cloud

iBogart
Cloud

DRAXIS
Cloud Services: 

Data Analysis  |  Variable Rate

DRAXIS
Cloud Services: 

Data Analysis  |  Variable Rate

Android AppAndroid App

iBOGART-NET 
CLIENT PVT SOLVER

Power 
Module

Ch.Ch.Ch.Ch.

GNSS Single-Band
Antennas

GNSS Single-Band
Antennas

A
d

ap
te

r

è Buffers è



AUDITOR  D2.2 Version 1.0 

 Page 11 (62) 

2. GNSS Front-End Module 

The GNSS Front-End module introduced in [1] implements two GNSS channels to support 

simultaneous data acquisition from two different bands. The general interfaces for this module are 

shown in Figure 2.1. 

 

Figure 2.1: Front-End interfaces 

The main input interfaces for the FE module are the external GNSS antennas. Different single-band 

antennas have been selected to reduce costs, add flexibility and simplify the FE layout. 

The main output interfaces are the I,Q data samples and its associated reference clock. Each signal (I 

and Q) is sampled with 8-bit resolution generating a 16-bits parallel stream. The two GNSS channels 

acquired produce a total of 32-bits (1 sample) in the output parallel data bus. This data stream is 

synchronized with the provided clock signal. 

The FE is based internally in two single band chains two support simultaneously the two proposed 

GNSS bands in a real time manner. Each band implements different RF Front-End modules while 

sharing the same clock and M&C logic. A bidirectional interface implemented via a UART bus 

provides the external M&C capabilities. Further details for each chain are described in the following 

sections. 

A summary of the front-end initial specification is shown in Table 2.1. 

Table 2.1: Front End Specification 

Channel  

Channel 1 (fixed) L1/E1 yes 

Channel 2 (configurable) 
  

L2C yes 

L5/E5a  yes 

Frequency bandwidth 

Sampling frequency (in MHz)1 
  

L1/E1 ~4 MHz + 2xIF 

L2C ~4 MHz + 2xIF 

L5/E5a ~25 MHz + 2xIF 

                                                           

1
 Exact value depends on local oscillator configuration and internal crystal parameters, a configurable sampling frequency of 

6.25/12.5/25 Msps will be available for all channels to assess different data rates capabilities. 

FRONT-END Module

Control:
- FE channel configuration
- AGC monitoring & control

FRONT-END Receiver:

2x M&C
(UART bus)

1x Clock

32x data
(I,Q 8-bit samples

 2x channels)

VCC GND

Clock

Configurable ChannelConfigurable Channel

/N

Fixed ChannelFixed Channel
x16

x16

GNSS Single-Band
Antennas

GNSS Single-Band
Antennas



AUDITOR  D2.2 Version 1.0 

 Page 12 (62) 

 Option a: L1/E1 and L2C ~4 MHz + 2xIF 

 Option b: L1/E1 and L5/E5a ~25 MHz + 2xIF 

Bits per sample 

Each channel will generate 8 bits I + 8 bits Q in 2's complement. 

The adapter module in the Zynq will be in charge of reading these inputs and converting 
them to baseband. 

Intermediate Frequency  

Depending on the band and architecture, Zero-IF may not be achieved. Different IF 
frequencies (from several kHz to a few MHz) would be used instead. Sampling frequency 
would higher than defined to cope with the IF 

IF 
  

L1/E1 Up to 1 MHz  

L2C Up to 1 MHz 

L5/E5a Up to 1 MHz 

AGC 

 The gain provided by the AGC needs to be known in the receiver side (can be at 
low rate, using SPI or I2C). 

 Possibility to fix that gain by software (required by some test procedures). 

Reference oscillator 

Accuracy <= 0.5ppm 

External oscillator option YES (SMA female connector) 

Antenna input 

Connector type SMA female 

Impedance 50 ohms 

On-board DC Bias-T (for active GNSS 
antenna) 

YES (5v DC output is required to power 
the GNSS antenna LNA) 

Signals Summary 

CH1 DATA In-phase component (real part) 8 

CH1 DATA Quadrature component (imaginary part) 8 

CH2 DATA In-phase component (real part) 8 

CH2 DATA Quadrature component (imaginary part) 8 

Sample CLOCK 1 

VCC 1 

GND 1 

 

2.1 Fixed Band 

The fixed band schema is show in Figure 2.2. It is based on an embedded front RF downconverter and 

a high performance ADC backend. Both elements are synchronized via a common clock source which 

is also provided externally as the reference data clock.  

The AGC module continuously evaluates the GNSS signal level generates an 8-bit digital word that 

provide a link quality indicator (LQI) to the FE microcontroller. 



AUDITOR  D2.2 Version 1.0 

 Page 13 (62) 

    

Figure 2.2: Single E1/L1 bands 

A fixed 8-bit dual ADC provides a continuous I,Q 16-bit data stream to be consumed directly by the 

Zynq Board. 

2.2 Configurable Band 

The configurable band schema follows a similar approach than the single band using a configurable 

RF downconverter and a custom LNA/Filter chain to select the proper GNSS band to be received. 

Either one single-band antenna or a dual-band antenna could be connected to the RF input. 

 

Figure 2.3: Single L2C or E5a/L5 band 

The clock and M&C logic is shared with the single band while this chain adds another 16-bit I,Q 

samples to the output data bus. 

 

FRONT-END MODULE

Control (shared)

FRONT-END
Receiver

Microcontroller
Monitor & Control:
- Gain Control
- Frequency Bands
- Sampling

M&C interface
(UART/USB)

GNSS E1/L1 
active/passive antenna

GNSS E1/L1 
active/passive antenna

SPI

LNA
Filter

Downconverter

Clock (shared)

2x
8-bit ADC

AGC

I,Q samples (L1/E1)

/N
Clock

FRONT-END MODULE

Control (shared)

FRONT-END
Receiver

Microcontroller
Monitor & Control:
- Gain Control
- Frequency Bands
- Sampling

M&C interface
(UART/USB)

SPI

Clock

2x
8-bit ADC

AGC

I,Q samples
(E5a/L5)

Clock
/N

LNA
Filter

L2C, E5a/L5
LNA

GNSS L2C or E5a/L5 
antenna

GNSS L2C or E5a/L5 
antenna

Configurable
Downcoverter



AUDITOR  D2.2 Version 1.0 

 Page 14 (62) 

2.3 M&C commands 

 

In order to configure, fine tune and test the FE module the commands show in Table 2.2 will be 

implemented. 

Table 2.2: FE M&C commands 

Message Description 

Configure ch2 Select L2C or E5a/L5 

Enable/Disable AGC Enables or disables the AGC process 

Set fixed gain value per ch. Manually set a fixed gain value per channel. 

Read current gain value per ch. Gets the current gain applied by AGC or manually fixed. 

Set/Get sampling frequency Establish the reference sampling frequency for all channels 

between a list of valid values 

Get firmware version Get the current internal firmware version 

Get AGC counter Only for debugging 

Set/Get downconverter config For testing and debugging purposes 

  

  



AUDITOR  D2.2 Version 1.0 

 Page 15 (62) 

3. Signal Processing 

GNSS baseband signal processing (understood as the process of computing GNSS observables from 

raw samples obtained at the output of a radio frequency front-end) will be defined by software and 

executed by the processing platform described below.  

Most of the operations required by GNSS processing can be executed in real-time in ARM processors. 

Indeed, the software receiver GNSS-SDR can already be built and executed in such processors. 

Recent experiments shown that the software can even attain real-time execution in high-end, ARM-

based devices [2], but only for very basic configurations (on the order of eight channels targeting GPS 

L1 C/A signals with a sampling rate of 2 Msps). 

In order to attain the electric characteristics targeted in AUDITOR, and thus its computational 

requirements, today’s ARM-based platforms are still not fast enough. 

The strategy adopted in AUDITOR consists of offloading some of the processing work from the 

central processing unit to a field-programmable gate array (FPGA) device. This Section describes a 

system-on-chip architecture that integrates all-purpose ARM processors and FPGAs in a single chip 

3.1 Zynq Platform 

The Zynq SoC comprises two main parts: 

 Processing System (PS): the processing system contains a dual-core ARM Cortex-A9 

processor, a number of processor peripherals (DDR controller, SPI, DMA controller, internal 

RAM memory, interrupt controller, etc.) and a number of interfaces to the PL. 

 Processing Logic (PL): the processing logic contains an Artix or Kintex FPGA with all of its logic 

cells and processing modules (DSP48, FIFOs, RAMs, etc.) and a number of interfaces to the 

PS. 

The table below shows the elements that are contained in each part more info can be found in [3]. 

Table 3.1: Zynq SoC components 

Part Contents 

PS Dual Core ARM Cortex-A9 processor with NEON floating point units, Memory 

Management Units and L1 and L2 cache memories. 

Internal hard-coded non-accessible BOOT ROM to run basic system 

configuration and to load the first stage boot loader (FSBL) from an external 

resource. 

256 kB RAM OCM (On Chip Memory) 

Generic Interrupt Controller with private interrupts (for each core), software 

interrupts, peripheral interrupts and interrupts coming from the PL. 

Timers and watchdogs for the ARM cores and the PL 

DMA controller 

Flash/asynchronous SRAM memory controller 

Quad-SPI flash controller 



AUDITOR  D2.2 Version 1.0 

 Page 16 (62) 

SD/SDIO controller 

General Purpose I/O peripheral 

USB Host, Device and OTG controller 

Gigabit Ethernet controller 

SPI Controller 

CAN controller 

UART Controller 

I2C controller 

Interface to the PL 

PL Artix or Kintex FPGA 

Interface to the PS 

The PS and the PL are in separate areas of the SoC and have their own pins. By default the 

peripherals listed in Table 3.1 can only be accessed from the pins that lay in the PS area because the 

peripherals are physically situated in the PS area. However, some peripheral interfaces can be 

internally routed to the PL and accessed from FPGA pins that lie in the PL. 

The PS and PL will contain different processing elements of the AUDITOR project. Figure 3.1 shows 

the Digital Processing Platform (PS and PL) inner modules including the interconnection with the 

radio-frequency front-end. 

 

Figure 3.1: Overview of AUDITOR’s digital processing platform 



AUDITOR  D2.2 Version 1.0 

 Page 17 (62) 

3.2 Zynq Processing Logic (PL) 

In the PL section of the Zynq platform custom units of logic, also known as intellectual property (IP) 

cores, will be developed to build low level processing blocks to transform the GNSS raw data stream 

for the higher level algorithms. In this manner the processing is divided in two phases. Initially a 

“front-end” processing of the raw GNSS samples produced by the RF FE is defined to generate a fixed 

continuous data stream. Secondly a “back” processing or hardware accelerators, devoted to the 

extraction of the GNSS data embedded in the logic channels, is implemented via multiple buffers and 

parallel correlators. 

3.2.1 Front-end logic 

Taking into account the architecture overview shown in Figure 1.1, Front-end logic is allocated into 

the High Accuracy Software module that runs in the Zynq platform to implement high efficient pre-

processing. The main features of the Front-end logic are: 

 Physically interconnect with the FE module. 

 Adapt the maximum 8-bits/sample to lower values. 

 Provide a flexible buffering to feed the higher processing algorithms. 

The relation interconnection between these elements is depicted in Figure 3.2 which components 

are detailed next.  

 

Figure 3.2: FE logic schema 

Physical Connections 

The front-end logic interfaces with the FE output data signals and M&C UART bus. Considering the 

ZedBoard as the targeting host processor the first approach to implement the interconnection would 

be the use of the Pmod connectors [4]. These connectors provide easier access to signals during 

prototype development. Four Pmods are available embedding 8 data lines each as show in Figure 3.3. 

Adapter

CH1/I 8 bits

CH1/Q 8 bits

CH2/I 8 bits

CH2/Q 8 bits

32 bits (max)

Config

Buffer

CH1/I

32 bits (max)
CH1/Q

CH2/I

CH2/Q

......

Config

Fr
o

m
 F

E 
M

o
d

u
le

(v
ia

 F
M

C
 c

o
n

n
ec

to
r)

To
 s

ig
n

al
 p

ro
ce

si
n

g 
co

re

Front-End Config Interface
(via custom registers)

To FE driver



AUDITOR  D2.2 Version 1.0 

 Page 18 (62) 

 

Figure 3.3: ZedBoard Pmod pinout. 

Parallel bits sample transfer will require 32 data signals and 1 associated clock. This requires the use 

of all the four Pmods to receive the parallel GNSS multichannel data stream. In order to simplify the 

wiring and relax the requirements to fully occupy the Pmod connectors (which are not available in 

high performance Zynq platforms such as the ZC706 only one PMOD exposed) and alternative 

solution based on the FMC breakout board is followed. 

The FMC breakout board, see Figure 3.4, exposes the entire FMC I/O and clock lines to a commodity 

2.54 mm pins. Front-end PCB could be connected to the FMC breakout board using a standard 40 

pins 2.54 mm female connector. 

 

Figure 3.4: FMC XM105 Debug Card. 

This solution reduces the initial effort for the development of the AUDITOR system adding multiple 

I/O lines using a standard ZedBoard, and allows the future evolution into and more embedded 

prototype as the MicroZed or ZC706 board which exposes only the FMC connectors. Thanks to the 

Zynq architecture flexibility the use of different Pmod or FMC wiring schemas could be easily 

converted by rerouting the Zynq internal constraints. 

Adapter 

The input GNSS I/Q samples from both channels are provided by a fixed 8-bit ADC module. In order 

to add additional flexibility to reduce this rate and relax the processing requirements from the Zynq 



AUDITOR  D2.2 Version 1.0 

 Page 19 (62) 

platform lower bits/sample can be configured. This module will be implemented as a VHDL core that 

will provide standard bits per sampled used in GNSS receiver: 2-bit, 4-bit or 8-bit per sample. 

Buffer 

The decimated samples provided by the Adapter module need to be streamed in a continuous way to 

be consumed by pre-processing algorithms. In order to do this a Buffer is provided implemented as a 

high performance VHDL core that can be read/write at different speeds. The buffer packing strategy 

could be configured taking into account the Adapter bits per sample and the fixed buffer word size of 

32-bits, the following strategies will be evaluated and partially implemented: 

- Full 8-bits: 32 bits  

- 4-bits: 16 data bits, 16 dummy bits 

- 4-bits: 16 data bits sample 1, 16 data bits sample 2 (output read frequency/2) 

- 2-bits: 8 data bits, 24 dummy bits 

- 2-bits: 4 data bits sample 1, sample 2, sample 3, sample 4 (output read frequency/4) 

FE config interface 

The FE config size will provide via custom registers the configuration of the Adapter and Buffer 

parameters: 

 Adapter bits-sample 

 Buffer packing strategy  

The configuration of these register will be available from the Zynq Processing system running a Linux 

OS via the Front-end driver (see subsection 3.2.2)  

 

3.2.2 Hardware accelerators 

The hardware accelerators implement signal processing functions that require a lot of computational 

power. These functions are implemented in the Zynq Processing Logic (PL) to offload these tasks 

from the ARM cores (this is: the Zynq processing system or PS). The hardware accelerators process 

data at the base-band sampling rate. There are two types of hardware accelerator modules:  the 

acquisition modules and the correlation modules (tracking). 

The PL not only implements the hardware accelerators but also the reception of the base-band 

samples coming from the A/D converters and the buffering of the samples, possibly including digital 

down-sampling filters. Figure 3.5 shows a block diagram of the PL, including the hardware 

accelerators and the buffering of the received samples. 



AUDITOR  D2.2 Version 1.0 

 Page 20 (62) 

 

Figure 3.5: Block diagram of the PL 

 

The PS instantiates the following modules: 

 Reset: this module performs a total RESET of the FPGA modules and logic upon request of 

the uP (the PS). 

 Down-sampling: digital down-sampling filters to reduce the sampling frequency of the base-

band signal. The down-sampling filters can be implemented at the input or at the output of 

the main FIFO. 

 Main FIFO GPS-L1CA/Galileo-E1/EGNOS: queue that stores the complex I/Q samples 

delivered by the A/D converter that is tuned to the RF frequency band of the following 

signals: GPS-L1CA, Galileo-E1 and EGNOS. These signals use the same RF carrier frequency 

and can be received simultaneously. The FIFO receives I/Q samples at the A/D sampling rate. 



AUDITOR  D2.2 Version 1.0 

 Page 21 (62) 

 Main FIFO GPS-L2C/GPS-L5/Galileo-E5: queue that stores the complex I/Q samples delivered 

by the A/D converter that is tuned to any of the following bands: GPS-L2C, GPS-L5 or Galileo-

L5. Note that the GPS-L5 and the Galileo-E5a RF carrier frequencies are the same and can be 

received simultaneously. The other RF carrier frequencies are different and cannot be 

received simultaneously. The FIFO receives I/Q samples at the A/D sampling rate.  

 Acquisition modules: module that runs the acquisition algorithm. Acquisition module 1 is 

connected to the GPS-L1CA, Galileo-E1 and EGNOS signals. Acquisition module 2 is connected 

to the GPS-L2C, GPS-L5 and Galileo-E5 signals.  

 Sample Sync 1: this module synchronizes the output of the Main FIFO GPS-L1CA/Galileo-

E1/EGNOS, the Acquisition 1 and the channels FIFOs 1 to 24. This module ensures that every 

FIFO output sample is captured by the Acquisition Module and all the FIFO channels that are 

connected to it. 

 Sample Sync 2: this module synchronizes the output of the Main FIFO GPS-L2C/GPS-

L5/Galileo-E5, the Acquisition 2 and the channels FIFOs 25 to 48. This module ensures that 

every FIFO output sample is captured by the Acquisition Module and all the FIFO channels 

that are connected to it. 

 Channel FIFOs: the channel FIFOs store the channel input samples temporarily. The purpose 

of the channel FIFOs is to avoid the main FIFOs from being blocked when one of the channels 

blocks the input samples temporarily. The Acquisition modules do not require a FIFO channel 

because they drop the samples that they don’t use, therefore the acquisition modules never 

block the data flow. Note: depending on the overall performance that is achieved by the 

main FIFO, the channel FIFOs may not be needed. 

 Correlator modules: the correlator modules implement the Doppler wipe-off and the 

correlation between the received PRN sequence and the local PRN sequence. We expect to 

be able to use a maximum of 24 correlators connected to the GPS-L1CA/Galileo-E1/EGNOS 

analog front-end, and 24 correlators connected to the GPS-L2C/GPS-L5/Galileo-E5 analog 

front-end. However the number of correlators might be limited by the capacity of the PL. 

The interface between the hardware accelerators and the PS is implemented using the AXI protocol 

(see section 0).  

Coordination between the hardware accelerators and the PL: 

When the receiver is turned on the receiver needs to locate the GNSS satellites that are available at 

that moment. To do so and to track the existing satellites, the PS runs the following algorithm: 

Table 3.2: Use of the hardware accelerators to locate and track the GNSS satellites. 

Step Action 

1  Load the local codes and configuration data corresponding to the candidate satellites to 

be located first to the PL acquisition modules 

2 Run the acquisition modules. 

3 When one of the acquisition modules finishes check the results to see if a satellite has 

been detected or not. 

4 If a satellite has been detected enable one of the tracking modules and set it to track 

that satellite.  



AUDITOR  D2.2 Version 1.0 

 Page 22 (62) 

5 Load the local code of another candidate satellite to the acquisition module that is 

ready and run the acquisition module again. 

6 In the meantime the PS receives data from the tracking modules that are locked to a 

GNSS satellite. Simultaneously to the location of new GNSS satellites by the acquisition 

modules in the PL, the PS processes the data obtained from the tracking modules. 

7 If any tracking module loses contact with the GNSS satellite that it is tracking then 

disable the tracking module. It becomes then available to track new satellites. 

8 Go back to step 3 

The buffer control and the hardware accelerators are explained in the following subsections. 

 Buffer control 3.2.2.1

The PS receives the base-band samples from the A/D board at a fixed sampling rate. The receiver 

buffering performs three tasks: 

 Store the received samples before they are processed by the acquisition and/or the 

correlation modules. 

 Make the FPGA clock independent of the A/D sampling clock. 

 Distribute the received samples among all the hardware accelerator modules (the acquisition 

module and the correlation modules). 

 

Buffering control: 

The primary sample buffering is performed by the main FIFOs (see Figure 3.5). 

The hardware accelerators (acquisition and correlation modules) can process the received samples 

faster than the sampling clock. However the hardware accelerators may block the input buffer from 

time to time when they are running internal calculations. When this happens the main FIFO stores 

the received samples temporarily. When the hardware accelerators are ready again they get more 

samples from the FIFO and they catch up with the received signal. 

 

The sample synchronization modules (sample sync 1 and sample sync 2) make sure that the samples 

delivered by the main FIFOs are captured by all the hardware accelerators. This means that a 

received sample is not removed from the FIFOs unless all the hardware accelerators that are 

connected to that FIFO are ready to read the sample. 

 

Because of the sample synchronization modules, if one hardware accelerator blocks the sample flow 

temporarily, none of the other hardware accelerators can read samples from the main FIFO. In order 

to avoid this, there is the possibility of adding smaller FIFOs between the main FIFO and every 

hardware accelerator module. These are the channel FIFOs shown in Figure 3.5. The way these FIFOs 

work is the following: if one or some of the hardware accelerators block the sample flow temporarily 

(because they are not ready to read samples from the FIFO), then the corresponding channel FIFO 

reads the samples from the Main FIFO and stores the samples temporarily for that hardware 

accelerator only. In this way the hardware accelerators that are ready to read samples are not 

blocked by the modules that are blocking the flow of data. When the blocking modules are ready 



AUDITOR  D2.2 Version 1.0 

 Page 23 (62) 

they read the samples from their channel FIFOs instead of the main FIFO, they process the samples 

and they catch up with the other modules. 

 

The acquisition modules drop the samples that they don’t need to process; therefore they don’t 

need the channel FIFOs. The tracking modules cannot drop any samples, if they are not ready to 

process samples they block the data flow, therefore the channel FIFOs are possibly needed for them. 

 

Independence of the sampling clocks: 

This is a common hardware issue. The PS and the PL work with their internal sampling clocks. The 

A/Ds deliver the samples to the FPGA using the A/D sampling clocks.  The FPGA captures the A/D 

samples using the sampling clocks of the A/D but it needs to process the samples using the internal 

PS and PL clocks. 

This clock conversion is done in the PS, in the buffering itself. The buffering is implemented using 

Xilinx FIFOs, which are hardware designed to use different clocks at the input and at the output. The 

Xilinx FIFO modules read samples using the external A/D sampling clock but they output samples 

using the sampling clock of the PL. This process is called clock domain crossing (CDC). 

 

Sample distribution among the hardware accelerators 

As explained above in the buffering paragraphs, the sample distribution among the hardware 

accelerators is implemented in the sync modules. These modules ensure that all the samples are 

captured by all the hardware accelerator modules and no module misses any sample. 

 

 Signal Acquisition 3.2.2.2

The Acquisition modules run the acquisition algorithm. 

The Acquisition module processes samples on a block by block basis. The samples that are not 

processed are dropped. As the non-processed samples are dropped, the Acquisition module does not 

need to have an input FIFO like the other channels: from the moment the Acquisition module starts 

processing a block of samples, all the incoming samples are dropped until a new block of samples is 

processed. There is no requirement on how fast the acquisition has to be able to process the 

samples, apart from the fact that it should process them as fast as possible in a way that the total 

acquisition time is acceptable for the user. Therefore the Acquisition module captures a new block of 

samples for processing as soon as the processing of the current block of samples is finished, but 

there is no need to buffer the received samples. 

 

In spite of the fact that the samples that are not processed are dropped, the Acquisition module 

needs to keep track of the number of samples that have entered acquisition since the FPGA was 

booted. When the acquisition module detects a satellite, it reports both the sample number of the 

first sample of the block of samples that has been processed with the acquisition algorithm and the 

synchronization point or offset from the first sample, apart from other estimated parameters. This 

information is needed by the tracking algorithms such that they can locate the synchronization point 

in their buffers. 



AUDITOR  D2.2 Version 1.0 

 Page 24 (62) 

 

In order for the sample counter of the acquisition module and the sample counters of the correlator 

modules to be synchronized, the sample counters of all the modules count up all the received 

samples. All the modules (acquisition and correlators) receive samples all the time from the moment 

the FPGA is programmed, regardless whether the modules are enabled or disabled, regardless 

whether the modules are processing samples or not and regardless whether the modules are have 

some kind of interaction with the PS or not. The following table summarizes the behaviour of the 

acquisition module: 

Table 3.3: Processing of the received samples and behaviour of the input sample counter in the 

processing module 

Status of the Acquisition 

module 

Processing of the input 

samples 
Input sample counter 

Disabled Receive the input samples and 

drop them. Do not block the 

input data flow. 

Increment the input sample 

counter for each received 

complex sample (I/Q). 

Configuration (by the PS) Receive the input samples and 

drop them. Do not block the 

input data flow. 

Capturing samples for 

processing  

Capture the input samples 

and store them in an input 

buffer 

Processing a captured block of 

samples and reporting data to 

the PS 

Receive the input samples and 

drop them. Do not block the 

input data flow. 

As the input sample counter cannot have an unlimited number of bits, when it reaches its maximum 

value it wraps back to zero and restarts. This is expected and it is a normal behaviour. As the input 

sample counters from all the modules (acquisition and correlators) have the same number of bits, 

the channels are still able to use the input sample counter and synchronization point reported by the 

acquisition module. The only trick is that the correlator algorithms have to check for a possible 

counter wrapping back to zero. 

 

The acquisition module produces output data only when they have valid output data available 

Table 3.4: Production of output data in the acquisition modules 

Status of the correlator module Production of output data 

Disabled The acquisition module does not produce any 

output data 

Configuration (by the PS) The acquisition module does not produce any 

output data 



AUDITOR  D2.2 Version 1.0 

 Page 25 (62) 

Status of the correlator module Production of output data 

Capturing samples, processing and reporting 

to the PS 

The acquisition module produces output data 

only when it has valid data 

 

 Signal Tracking 3.2.2.3

The correlator modules run the correlator algorithm. Each tracking module corresponds to one 

channel. The correlator modules work with the following GNSS signals (GPS L1, GPS L5, Galileo L1 and 

Galileo L5). 

The following block diagram is a description of the correlator modules. 

 

Figure 3.6: Correlation Module block diagram 

The correlator modules run the Doppler wipe-off on the received signals (using the CORDIC SIN/COS 

algorithm) and correlate the signals with various shifted versions of the local GNSS codes in order to 

keep the synchronization between the receiver and the GNSS transmitters in the satellites. Index 1, 

index 2 and index 3 in Figure 3.6 point to various shifted positions in the memory that contains the 

local code. The result of the correlator module is stored in the Early, prompt and late accumulators (E 

ACC, P ACC and L ACC). In Figure 3.6 there are three correlation lines (early, prompt and late). 

Depending on the type of GNSS signal, up to 5 correlator lines may be needed to keep the receiver 

synchronized with the satellite. 

As opposed to the acquisition algorithm, the correlator algorithms use all the received samples. It is 

expected that sometimes the correlator module has to stop the input flow of data because of some 

internal calculations or some interaction with the PS. Because of this the correlator modules use the 

channel FIFOs in the input.  

As in the Acquisition module, the correlator modules need to keep track of the number of samples 

that have entered acquisition since the FPGA was booted. 



AUDITOR  D2.2 Version 1.0 

 Page 26 (62) 

In order for the sample counter of the acquisition module and the sample counters of the correlator 

modules to be synchronized, the sample counters of all the modules count up all the received 

samples. All the modules (acquisition and correlators) receive samples all the time from the moment 

the FPGA is booted, regardless whether the modules are enabled or disabled, regardless whether the 

modules are processing samples or not and regardless whether the modules are have some kind of 

interaction with the PS or not. The following table summarizes the behaviour of the correlator 

modules: 

Table 3.5: Processing of the input samples in the channel modules 

Status of the correlator 

module 

Processing of the input 

samples 
Input sample counter 

Disabled Receive the input samples and 

drop them. Do not block the 

input data flow. 

Increment the input sample 

counter for each received 

complex sample (I/Q). 

Configuration (by the PS) Receive the input samples and 

drop them. Do not block the 

input data flow. 

Reporting data to the PS Block the flow of input 

samples to avoid losing data 

Capturing samples and 

processing  

Capture the input samples 

and process them. If the 

channel module has a 

temporary latency because of 

its normal working behaviour 

then block the input data flow 

(prevent new samples from 

coming in) during this latency. 

As in the case of the acquisition, the input sample counter cannot have an unlimited number of bits.  

When it reaches its maximum value it wraps back to zero and restarts. This is expected and it is a 

normal behaviour. As the input sample counters from all the modules (acquisition and correlators) 

have the same number of bits, the channels are still able to use the input sample counter and 

synchronization point reported by the acquisition module. The only trick is that the correlator 

algorithms have to check for a possible counter wrapping back to zero. 

 

The correlator modules produce output data only when they have valid output data available (see 

Table 3.6). 

Table 3.6: Status of the correlator 

Status of the correlator module Production of output data 

Disabled The correlator module does not produce any output data 



AUDITOR  D2.2 Version 1.0 

 Page 27 (62) 

Configuration (by the PS) The correlator module does not produce any output data 

Initialization (by the PS) The correlator module does not produce any output data 

Capturing samples and processing The correlator module produces output data only when it 

has valid data 

 

3.3 FPGA-ARM interface (AXI) 

The AXI interface (Advanced eXtensible Interface) is a bus interface specification defined in AMBA 

(Advanced Microcontroller Bus Architecture), an open standard on-chip interconnect specification. 

The AXI bus is targeted at high performance, high clock frequency system designs. It includes 

features that make it suitable for high speed interconnection of microprocessors and peripherals.  

 

The AXI bus is used by the Xilinx devices (FPGAs and SoCs) to exchange information between 

hardware accelerators and between hardware accelerators and microprocessors (the PL and the PL). 

For this reason there are a number of AXI interfaces between the PL and the PS. 

The interfaces between the PS and the PL are the following: 

 

Table 3.7: Interfaces between the PS and the PL 

Interface Characteristics 

2x M_AXI_GP Two 32-bit General Purpose AXI Master Interfaces (PS Master -> PL slave)  

2x S_AXI_GP Two 32-bit General Purpose AXI Slave Interfaces (PS Slave <- PL Master) 

4x S_AXI_HP Four 32/64-bit High Performance AXI Slave Interfaces (PS Slave <- PL Master) 

1x S_AXI_ACP One 32-bit  cache-coherent AXI Slave Interface (PS Slave <- PL Master) 

 

The characteristics of them are explained in the table below: 

Table 3.8: Characteristics of the various AXI interfaces 

AXI Interface  Characteristics 

AXI_ACP  

(cache coherent) 

Using this interface a PL master can access the following memories: 

DDR and the 256 kB OCM (On Chip Memory in the PS) 

The particularity of this type of interface is that it goes through the 

Snoop Control Unit, which means that whatever it is written or read 

to/from this memory is coherent with the contents of the L1/L2 Cache 

of the ARM processors and with what the ARM processors see when 

they access the same piece of memory. 

 

In exchange for this coherency, this interface may present some more 



AUDITOR  D2.2 Version 1.0 

 Page 28 (62) 

latencies than the other AXI interfaces. 

AXI_HP 

(High Performance) 

Using this interface a PL master can access the DDR and the 256 kB 

ROM of the PS. 

This interface is optimized for high performance, meaning that it is 

optimized for throughput.  

The difference between this type of interface and the other interfaces 

is that this one is queued and it is not cached. It contains FIFOs to 

ensure that the PL can exchange data with the PS at a constant 

throughput regardless of temporary latencies in the AXI interconnect. 

The FIFOs absorb these latencies.  

AXI_GP 

(General Purpose) 

General Purpose AXI interface. This type is the only type of interface 

that contains AXI Masters on the PS side. They are used by the PS to 

access devices in the PL that are memory-mapped to the AXI 

addresses. 

 

An aspect to consider is the theoretical bandwidth of the various interfaces is reported in the Xilinx 

manual (see table below). 

Table 3.9: Theoretical bandwidth of PS-PL and PS memory interfaces (from Xilinx) 

 

 

The figure below shows the various AXI interfaces, the OCM (On Chip Memory) and the DDR (Double 

Data Rate RAM memory) interface, and can be used graphically to see what resources can be 

accessed from which AXI interface, including the AXI interfaces that are internal to the PS. 

 



AUDITOR  D2.2 Version 1.0 

 Page 29 (62) 

 

Figure 3.7: APU (Application Processor Unit) system view diagram 

 

3.4 Zynq Processing System (PS) 

The processing systems include multiple processes that run in a Linux OS to implement the high level 

algorithms and user services of the GNSS receiver. The use of a Linux OS speeds the development 

due to the high availability of different third-party libraries and utilities while the more critical raw 

real-time pre-processing is controlled by the PL. 

3.4.1 Front-end driver 

The Front-end driver is a software component to provide a common configuration interface for the 

FE logic and the FE module from the Zynq Processing system running a Linux OS. 

The main parameters that can be configured using this module are shown in Table 2.2 and extended 

with the configuration parameters of the Adapter and Buffer cores included in the FE logic detailed in 

3.2.1: 



AUDITOR  D2.2 Version 1.0 

 Page 30 (62) 

Table 3.10: Front-end logic commands 

Command Description 

Configure adapter decimation Select 8-bit, 4-bit or 2-bit. 

Configure buffer pack strategy 32 bits with dummy bits or full 32 data bits with multiple samples. 

 

3.4.2 GNSS-SDR module  

GNSS-SDR is the software application in charge of computing GNSS data (that is, GNSS observables, 

including pseudorange, pseudorange rate, phase range and signal strength, and the corresponding 

navigation messages) from the raw signal samples delivered by the radio frequency front-end. 

A GNSS software receiver is a complex system, which description needs to be addressed at different 

abstraction layers. Hereafter we describe the software architecture implemented in GNSS-SDR, 

which is based on GNU Radio (see http://gnuradio.org); a well-established framework that provides 

the signal processing runtime and processing blocks to implement software radio applications. 

Frameworks are a special case of software libraries - they are reusable abstractions of code wrapped 

in a well-defined API, yet they contain some key distinguishing features that separate them from 

normal libraries: the overall program’s flow of control is not dictated by the caller, but by the 

framework; and it can be extended by the user usually by selective overriding or specialized by user 

code providing specific functionality. Software frameworks aim to facilitate software development by 

allowing designers and programmers to devote their time to meeting software requirements rather 

than dealing with the more standard low-level details of providing a working system, thereby 

reducing overall development time. GNSS-SDR proposes a software architecture that builds upon the 

GNU Radio framework in order to implement a GNSS receiver. 

 

The general overview is as follows: 

 The Control Plane is in charge of creating a flow graph in which a sample stream goes 

through a network of connected signal processing blocks up to the position fix. The nature of 

a GNSS receiver imposes some requirements in the architecture design: since the 

composition of the received GNSS signals will change over time (initially, some satellites will 

be visible, and after a while, some satellites will not be visible anymore and new ones will 

show up), some channels will lose track of their signals and some new channels will have to 

be instantiated to process the new signals. This means that the receiver must be able to 

activate and deactivate the channels dynamically, and it also needs to detect these changes 

during runtime.  

 The Signal Processing Plane, consisting of a collection of blocks that actually implement 

digital signal processing algorithms. Efficiency is specially critical before and during 

correlations (the most complex operation in terms of processing load, but from which sample 

rate decreases three orders of magnitude), and even a modern multi-purpose processor 

must be properly programmed in order to attain real-time. 

 

 



AUDITOR  D2.2 Version 1.0 

 Page 31 (62) 

 The Control Plane 3.4.2.1

 

The Control Plane is in charge of creating a flow graph according to the configuration and then 

managing the modules. Configuration allows users to define in an easy way their own custom 

receiver by specifying the flow graph (type of signal source, number of channels, algorithms to be 

used for each channel and each module, strategies for satellite selection, type of output format, 

etc.). Since it is difficult to foresee what future module implementations will be needed in terms of 

configuration, we used a very simple approach that can be extended without a major impact in the 

code. This can be achieved by simply mapping the names of the variables in the modules with the 

names of the parameters in the configuration. 

 

3.4.2.1.1 The configuration mechanism 

Properties are passed around within the program using the ConfigurationInterface class. 

There are two implementations of this interface: FileConfiguration and 

InMemoryConfiguration.  

 FileConfiguration reads the properties (pairs of property name and value) from a file 

and stores them internally.  

 InMemoryConfiguration does not read from a file; it remains empty after instantiation 

and property values and names are set using the set_property method. 

 

FileConfiguration is intended to be used in the actual GNSS-SDR application, whereas 

InMemoryConfiguration is intended to be used in tests to avoid file-dependency in the file 

system. 

 

Classes that need to read configuration parameters will receive instances of 

ConfigurationInterface from where they will fetch the values. For instance, parameters 

related to SignalSource should look like this: 

Table 3.11: Configuration file syntax: setting parameters of the SignalSource module 

SignalSource.parameter1=value1 

SignalSource.parameter2=value2 

 

The name of these parameters can be anything but one reserved word: implementation. This 

parameter indicates in its value the name of the class that has to be instantiated by the factory for 

that role. For instance, if we want to use the implementation Pass_Through for module 

SignalConditioner, the corresponding line in the configuration file would be 

Table 3.12: Configuration file syntax: setting the implementation of the SignalConditioner 

module 

SignalConditioner.implementation=Pass_Through 



AUDITOR  D2.2 Version 1.0 

 Page 32 (62) 

 

Since the configuration is just a set of property names and values without any meaning or syntax, the 

system is very versatile and easily extendable. Adding new properties to the system only implies 

modifications in the classes that will make use of these properties. In addition, the configuration files 

are not checked against any strict syntax so it is always in a correct status (as long as it contains pairs 

of property names and values in INI format. An INI file is an 8-bit text file in which every property has 

a name and a value, in the form name = value. Properties are case-insensitive, and cannot 

contain spacing characters. Semicolons (;) indicate the start of a comment; everything between the 

semicolon and the end of the line is ignored. 

3.4.2.1.2 The GNSS Block Factory 

Hence, the application defines a simple accessor class to fetch the configuration pairs of values and 

passes them to a factory class called GNSSBlockFactory. This factory decides, according to the 

configuration, which class needs to be instantiated and which parameters should be passed to the 

constructor. Hence, the factory encapsulates the complexity of blocks' instantiation. With that 

approach, adding a new block that requires new parameters will be as simple as adding the block 

class and modifying the factory to be able to instantiate it. This loose coupling between the blocks' 

implementations and the syntax of the configuration enables extending the application capacities in 

a high degree. It also allows to produce fully customized receivers, for instance a testbed for 

acquisition algorithms, and to place observers at any point of the receiver chain. 

3.4.2.1.3 The GNSS Flow Graph 

The GNSSFlowgraph class is responsible for preparing the graph of blocks according to the 

configuration, running it, modifying it during run-time and stopping it.  

Blocks are identified by its role. This class knows which roles it has to instantiate and how to connect 

them to configure the generic graph that is shown in Figure 3.8. It relies on the configuration to get 

the correct instances of the roles it needs and then it applies the connections between GNU Radio 

blocks to make the graph ready to be started. 

The complexity related to managing the blocks and the data stream is handled by GNU Radio's 

gr::top_block class. Hence, GNSSFlowgraph wraps the gr::top_block instance so we 

can take advantage of the GNSS block factory, the configuration system and the processing blocks. 

This class is also responsible for applying changes to the configuration of the flow graph during run-

time, dynamically reconfiguring channels: it selects the strategy for selecting satellites. This can range 

from a sequential search over all the satellites' ID to smarter approaches that determine what 

satellites are most likely in-view, based on rough estimations of the receiver position, in order to 

avoid searching satellites in the other side of the Earth. This class internally codifies actions to be 

taken on the graph. These actions are identified by simple integers. GNSSFlowgraph offers a 

method that receives an integer that codifies an action, and this method triggers the action 

represented by the integer. 

Actions can range from changing internal variables of blocks to modifying completely the constructed 

graph by adding/removing blocks. The number and complexity of actions is only constrained by the 

number of integers available to make the codification. 

 



AUDITOR  D2.2 Version 1.0 

 Page 33 (62) 

This approach encapsulates the complexity of preparing a complete graph with all necessary blocks 

instantiated and connected. It also makes good use of the configuration system and of the GNSS 

block factory, which keeps the code clean and easy to understand. It also enables updating the set of 

actions to be performed to the graph quite easily. 

 

3.4.2.1.4 The Control Thread 

The ControlThread class is responsible for instantiating the GNSSFlowgraph and passing the 

required configuration. Once the flow graph is defined and its blocks connected, it starts to process 

the incoming data stream. A ControlThread object is then in charge of reading the control queue 

and processing all the messages sent by the processing blocks via the thread-safe message queue. 

 

 

Figure 3.8: General block diagram of a GNSS receiver. 

 The Signal Processing Plane 3.4.2.2

GNU Radio’s class hierarchy imposes a thread-per-block architecture that allows automatic 

scheduling in multicore processors, hiding all the complexity behind a simple and robust API. It uses 

shared memory to manage efficiently the flow of data between blocks, and offers a large set of well-

programmed blocks that provide implementations for very common signal processing tasks. In 

contrast, GNU Radio does not provide any standard way to provide control over the blocks. 

 

The user can build a receiver by creating a graph where the nodes are signal processing blocks and 

the lines represent the data flow between them. Conceptually, blocks process infinite streams of 

data flowing from their input ports to their output ports. The blocks’ attributes include the number 

of input and output ports they have as well as the type of data that flows through each one of them. 

Once they are connected and form a flow graph, the application can run and data will be put into the 



AUDITOR  D2.2 Version 1.0 

 Page 34 (62) 

stream. As long as there are data available, the working threads will run the code of the different 

blocks. 

 

A key aspect of an object-oriented software design is the class hierarchy, depicted in Figure 3.9. The 

notation is as follows: we used a very simplified version of the Unified Modelling Language (UML), a 

standardized general-purpose modelling language in the field of object-oriented software 

engineering. In this document, classes are described as rectangles with two sections: the top section 

for the name of the class, and the bottom section for the methods of the class. A dashed arrow from 

ClassA to ClassB represents the dependency relationship. This relationship simply means that 

class A somehow depends upon class B. In C++, this almost always results in a #include. 

Inheritance models “is a” and “is like” relationships, enabling you to reuse existing data and code 

easily. When ClassA inherits from ClassB, we say that ClassA is the subclass of ClassB, and 

ClassB is the superclass (or parent class) of ClassA. The UML modelling notation for inheritance 

is a line with a closed arrowhead pointing from the subclass to the superclass. 

 

As shown in Figure 3.9, gr::basic_block is the abstract base class for all signal processing 

blocks, a bare abstraction of an entity that has a name and a set of inputs and outputs. It is never 

instantiated directly; rather, this is the abstract parent class of both gr::hier_block2, which is a 

recursive container that adds or removes processing or hierarchical blocks to the internal graph, and 

gr::block, which is the abstract base class for all the processing blocks. A signal processing flow is 

constructed by creating a tree of hierarchical blocks, which at any level may also contain terminal 

nodes that actually implement signal processing functions. 

 



AUDITOR  D2.2 Version 1.0 

 Page 35 (62) 

 

Figure 3.9: Receiver’s class hierarchy. 

Class gr::top_block is the top-level hierarchical block representing a flow graph. It defines GNU 

Radio runtime functions used during the execution of the program: run(), start(), stop(), 

wait(), etc. As shown in Figure 3.10, a subclass called GNSSBlockInterface is the common 

interface for all the GNSS-SDR modules. It defines pure virtual methods, which are required to be 

implemented by a derived class. Classes containing pure virtual methods are termed “abstract;” they 



AUDITOR  D2.2 Version 1.0 

 Page 36 (62) 

cannot be instantiated directly, and a subclass of an abstract class can only be instantiated directly if 

all inherited pure virtual methods have been implemented by that class or a parent class. 

 

Figure 3.10: General interface for signal processing blocks. 

Subclassing GNSSBlockInterface, we defined interfaces for the receiver blocks defined in 

Figure 3.8. This hierarchy, shown in Figure 3.9, provides the definition of different algorithms and 

different implementations, which will be instantiated according to the configuration. This strategy 

allows multiple implementations sharing a common interface, achieving the objective of decoupling 

interfaces from implementations: it defines a family of algorithms, encapsulates each one, and 

makes them interchangeable. Hence, we let the algorithm vary independently from the program that 

uses it. 

 

 Example: dual-frequency receiver architecture 3.4.2.3

A single Signal Source can be equipped with more than one radio-frequency chain. This is the case of 

AUDITOR’s front-end, which will be able to deliver signals in two frequency bands. Those cases 

implies not only the configuration of the Signal Source, but also there is a need to set up different 

Signal Conditioners for each band, and configure the Channel implementations for the different 

signals present on each band. 

 

An example of such configuration is provided in Table 3.13. The generated is shown in Figure 3.11. 

Table 3.13: Configuration example for a dual-band receiver. 



AUDITOR  D2.2 Version 1.0 

 Page 37 (62) 

SignalSource.RF_channels=2 

SignalSource.implementation=UHD_Signal_Source 

... 

SignalSource.subdevice=A:0 B:0 

... 

SignalSource.freq0=1575420000 

SignalSource.freq1=1227600000 

... 

 

SignalConditioner0.implementation=... 

DataTypeAdapter0.implementation=... 

InputFilter0.implementation=... 

Resampler0.implementation=... 

 

SignalConditioner1.implementation=... 

DataTypeAdapter1.implementation=... 

InputFilter1.implementation=... 

Resampler1.implementation=... 

 

... 

Channels_1C.count=8 

Channels_2S.count=8 

 

; # Channel connection 

Channel0.RF_channel_ID=1 

Channel1.RF_channel_ID=1 

Channel2.RF_channel_ID=1 

Channel3.RF_channel_ID=1 

Channel4.RF_channel_ID=1 

Channel5.RF_channel_ID=1 

Channel6.RF_channel_ID=1 

Channel7.RF_channel_ID=1 

Channel8.RF_channel_ID=0 

Channel9.RF_channel_ID=0 

Channel10.RF_channel_ID=0 

Channel11.RF_channel_ID=0 

Channel12.RF_channel_ID=0 



AUDITOR  D2.2 Version 1.0 

 Page 38 (62) 

Channel13.RF_channel_ID=0 

Channel14.RF_channel_ID=0 

Channel15.RF_channel_ID=0 

 

; Channel signal 

Channel0.signal=1C 

Channel1.signal=1C 

Channel2.signal=1C 

Channel3.signal=1C 

Channel4.signal=1C 

Channel5.signal=1C 

Channel6.signal=1C 

Channel7.signal=1C 

Channel8.signal=2S 

Channel9.signal=2S 

Channel10.signal=2S 

Channel11.signal=2S 

Channel12.signal=2S 

Channel13.signal=2S 

Channel14.signal=2S 

Channel15.signal=2S 

 

... 

 

Acquisition_1C.implementation=...  

    ; or Acquisition_1C0, ..., Acquisition_1C7 

Acquisition_2S.implementation=...  

    ; or Acquisition_2S8, ..., Acquisition_2S15 

 

Tracking_1C.implementation=...  

    ; or Tracking_1C0, ..., Tracking_1C7 

Tracking_2S.implementation=...  

    ; or Tracking_2S8, ..., Tracking_2S15 

 

TelemetryDecoder_1C.implementation=...  

    ; or TelemetryDecoder_1C0, ..., TelemetryDecoder_1C7 

TelemetryDecoder_2S.implementation=...  



AUDITOR  D2.2 Version 1.0 

 Page 39 (62) 

    ; or TelemetryDecoder_2S8, ..., TelemetryDecoder_2S15 

 

... 

 

 

Figure 3.11: Simplified block diagram of a dual-band receiver of GPS L1 C/A and GPS L2C (M) 

signals. 

 

3.4.3 iBOGART user net and Client PVT Solver  

A modified RTKLIB implementation (AUDITOR RTKLIB) will be used as client PVT solver, to be installed 

in the Zynq Processing system running the Linux OS (as part of the High Accuracy Software Module). 

This is of key relevance since we know in advance that there is compatibility between RTKLIB and 

GNSS-SDR. In addition, this allows RTCM handling and the possibility to provide the outputs in 

multiple formats, including NMEA.  

RTKLIB is an open source positioning package and thus, any user can have access to its source code 

(mainly implemented in C-language). In order to adapt it to AUDITOR, it will be necessary to modify 

several RTKLIB routines, mainly to allow the applicability of the WARTK corrections in the PVT solver. 



AUDITOR  D2.2 Version 1.0 

 Page 40 (62) 

 

AUDITOR RTKLIB PVT solver module will be fed mainly by two inputs, the user raw GNSS 

measurements and the WARTK correction messages, corresponding mainly to precise predicted 

orbits and ionospheric delay model and will provide position (and velocity) as outputs. More in detail, 

these aspects are covered in the following sections. 

 iBOGART-user-net and PVT Inputs   3.4.3.1

As input, it will be necessary to retrieve the WARTK messages from the iBOGART Cloud (through an 

FTP connection and/or considering RTCM) certain existing products available from IGS servers (like 

clock and orbit corrections) as well as WARTK messages distributed through the internet. 

For additional details on RTCM, please refer to the corresponding section.  

 iBOGART-user-net and PVT baseline core: AUDITOR RTKLIB 3.4.3.2

RTKLIB can be the baseline solution for the core of the iBOGART-user-net and PVT at the user side. 

This is because this open source software allows precise positioning based on double differences or 

PPP techniques. For such purpose, it can retrieve data from other reference stations, as well as 

corrections, via internet, and it can apply DGNSS (see page 161 in the RTKLIB manual; available at 

http://www.rtklib.com/prog/manual_2.4.2.pdf) and PPP (see page 171 in the manual) algorithms. In 

addition, it can handle RTCM Messages (see page 124 in the manual). Nonetheless, since RTCM does 

not allow the proper distribution of WARTK messages, an update of RTKLIB will be necessary in the 

context of AUDITOR. 

 

Considering a modified RTKLIB (referred to as AUDITOR RTKLIB) is of key importance to easily reach 

the market. It should be taken into account that this is an Open Source solution that could be easily 

embedded in the Zynq Processing System within the GNSS-SDR receiver.  

 

The main scripts of RTKLIB are programmed in C and located in <RTKLIB root>/src. Their 

corresponding total number of lines, for the present version, is 36636, distributed as follows: 

Table 3.14: RTKLIB scripts and number of lines 

File Name Number of Lines 

convkml.c 197  

convrnx.c 1058 

datum.c 132  

download.c 837  

ephemeris.c 750  

geoid.c 7490  

ionex.c 477 

lambda.c 188 

options.c 510  



AUDITOR  D2.2 Version 1.0 

 Page 41 (62) 

pntpos.c 585  

postpos.c 1232  

ppp_ar.c 471  

ppp.c 1054  

preceph.c 589  

qzslex.c 618  

rcvraw.c 412  

rinex.c 2482  

rtcm2.c 428  

rtcm3.c 2101  

rtcm3e.c 2161  

rtcm.c 377 

rtkcmn.c 3688  

rtkpos.c 1792  

rtksvr.c 882  

sbas.c 916  

solution.c 1533 

stec.c 341  

stream.c 2190  

streamsvr.c 588  

tle.c 557  

Total 36636  

In AUDITOR, it will be necessary to modify several of such C-programs to allow for the application of 

WARTK messages. The RTCM conversion tool, part of RTKLIB package, will also play an important role 

to decode the messages when transmitted in RTCM format. 

 

In particular, ionospheric corrections to be applied for standard and PPP precise positioning can be 

selected from a set of options, including the broadcast Klobuchar model, IONEX GIMs and SBAS 

ionospheric models (like NeQuick for EGNOS). As an example, this can be seen in the function 

ionocorr, which computes the ionospheric corrections within the pntpos.c code (to enable standard 

positioning):  

Table 3.15: Ionospheric corrections in within ionocorr function 

/* broadcast model */ 

    if (ionoopt==IONOOPT_BRDC) { 



AUDITOR  D2.2 Version 1.0 

 Page 42 (62) 

        *ion=ionmodel(time,nav->ion_gps,pos,azel); 

        *var=SQR(*ion*ERR_BRDCI); 

        return 1; 

    } 

    /* sbas ionosphere model */ 

    if (ionoopt==IONOOPT_SBAS) { 

        return sbsioncorr(time,nav,pos,azel,ion,var); 

    } 

    /* ionex tec model */ 

    if (ionoopt==IONOOPT_TEC) { 

        return iontec(time,nav,pos,azel,1,ion,var); 

    } 

    /* qzss broadcast model */ 

    if (ionoopt==IONOOPT_QZS&&norm(nav->ion_qzs,8)>0.0) { 

        *ion=ionmodel(time,nav->ion_qzs,pos,azel); 

        *var=SQR(*ion*ERR_BRDCI); 

        return 1; 

    } 

    /* lex ionosphere model */ 

    if (ionoopt==IONOOPT_LEX) { 

        return lexioncorr(time,nav,pos,azel,ion,var); 

    } 

Several options are also present in the case of ppp.c code (script to enable PPP positioning). In the 

case of rtkpos.c (script to enable precise positioning based on double differences), the ionospheric 

corrections are not applied. Then, it will be necessary to apply the corrections derived from WARTK 

messages in a similar way as in the case of standard or PPP positioning.  

 

The different functions called to derive the ionospheric corrections and related parameters are 

included in other C programs like rtkcmn.c (broadcast model case within the RTKLIB common 

functions C script), ionex.c (tec model case; see also next paragraph) and sbas.c (SBAS model case). In 

the AUDITOR case, the corrections to be applied at the user location will need to be derived from 

DSM WARTK messages. For such a purpose, a new program will be implemented, with filename 

wartk.c, to implement the corresponding corrections based on the double differenced STEC values 

for each satellite. Another possibility would be to send the corrections in IONEX-like format and then 

adapt the existing ionex.c script when necessary 

 

Note that the C scripts on IONEX (ionex.c) and STEC (stec.c) contain several functions to allow reading 

IONEX format files (like GIMs), computing interpolated ionospheric values from a IONEX at the user 

location, derive the associated ionospheric delay, add STEC data to a grid, among other functions. 

 



AUDITOR  D2.2 Version 1.0 

 Page 43 (62) 

Regarding ambiguity resolution techniques, there are two already implemented in RTKLIB (TCAR, i.e. 

three carrier ambiguity resolution, and WL-NL, i.e. wide lane – narrow lane ambiguity resolution). 

Their implementation can be found in <RTKLIB root>/src/rtkpos_gsi.c (script to allow precise 

positioning for a certain experiment named GSI). In the frame of AUDITOR, there will be the need to 

implement a WARTK ambiguity resolution/constrain technique, mainly based on the findings of [5]. 

 

After any new routine is implemented (or any update on existing routines), it will be necessary to 

recompile the corresponding source codes, for instance by means of a makefile file (taking into 

account the existing one used to compile the Linux version of RTKLIB package and associated tools; 

see <RTKLIB root>/app/makefile and other makefile scripts within <RTKLIB root>/app).  

 

It is important to remark that even though this approach is the most suitable one to allow reaching 

the market, it has some associated risks that might be critical to reach the precise positioning goal 

within AUDITOR. In this regard, it shall be remarked that many routines may probably be not tuned 

in the same way as WARTK CPF PVT solver at the user side. For instance, how the Kalman filter is 

configured (process noise matrix for each modelled term may differ substantially) or how cycle-slips 

are detected.  

 

In this context, the iBOGART-user-net and PVT solver will be mainly based on GPS L1 and L2 (or L2C) 

measurements to maximize the reliability of the adopted solution, to minimize risks associated to 

further complexity of considering a multi-GNSS.  

 iBOGART-user-net and PVT Outputs 3.4.3.3

As it has been pointed out,the provision of the navigation solution (position and velocity) in NMEA 

format is also feasible by means of RTKLIB (see details provided in previous section). Nevertheless 

NTRIP could be supported in the future since GNSS-SDR allows the generation of GNSS data in a 

standard format ready to be streamed over the network in real time. For instance, the software 

receiver can act as a Ntrip Source feeding a Ntrip Server, just as a “professional” receiver does (thus 

allowing the deployment of a GNSS reference station). 

3.4.4 System control 

The GNSS receiver is composed of several processes that runs simultaneously and must be both 

synchronized and supervised from a common control plane. The control plane is implemented in the 

CPU and it is composed of the following software components: 

 Operating system 

 Receiver configuration 

 Startup scripts / status monitoring 

The main goal is to configure and launch the GNSS-SDR receiver process as fast as possible and keep 

the system running within the desired parameters. If some anomalous situation is detected (i.e. 

iBOGART network disconnect or hardware accelerator problem / hardware glitch) the control plane 

will trigger a corrective action (i.e. restart the communications or restart the receiver signal 

processing). Next sections are devoted to give details of each of the system control layers. 



AUDITOR  D2.2 Version 1.0 

 Page 44 (62) 

 Operating system 3.4.4.1

In contrast to Personal Computers (PC), embedded devices usually require custom versions of 

firmware to setup and configure all the hardware components. In classical PC systems, these tasks 

are implemented by the mainboard manufacturer in the Basic Input Output System (BIOS) firmware, 

and the new hardware additions, like expansion cards, are based in standards already implemented 

in BIOS. 

 

However, the selected GNSS-SDR embedded platform is based on a hybrid ARM/FPGA processor that 

requires a custom implementation of the whole boot process. Typically when booting an embedded 

processing system, there are a series of low‐level device‐specific operations that are executed to 

bring the system to a basic operating state. Tasks to be performed may include processor register 

initialization, memory initialization, peripheral detection and verification, and cache activation. At 

this stage there are very few resources available, and hence the bootstrap or first‐stage loader and 

its associated software must be as compact as possible. 

 

A second stage loader is generally required to load an operating system. This is beyond the 

capabilities of the bootstrap loader, so as its final task it loads and passes control to a larger and 

more capable second stage program. For the purposes of running Linux on an embedded system, U‐

boot provides all the features needed to act as the second stage. 

 

U‐boot is the de‐facto loader for embedded Linux because it has been adopted by almost every 

distribution (i.e. it is natively supported by Debian and Ubuntu). It runs on a wide range of processors 

and has been ported to innumerable boards. Online information is readily available and there are 

many support forums to aid developers in porting to new architectures. U‐boot includes a command 

line interface and many configuration options, including the ability to pass parameters to the Linux 

kernel to alter how the boot will proceed. It can load the kernel, the root file system (RFS) and the 

device tree and perform validation on the installation before passing control to the kernel for 

execution. 

 

The Device Tree is a file which contains a data structure describing the hardware system. The 

information is used by Linux during the kernel boot process to map device parameters such as device 

type, memory location and interrupt signals. Although we have already initialized and booted the 

ARM processor cores into a standalone running state, Linux has no knowledge of this and by default 

assumes that it must perform all initialization on its own. To do this it needs to set up virtual 

memory, print to the console, and locate all of the installed hardware in the system and load 

software drivers. 

 

These operations are carried out by writing to registers, but the Linux kernel needs a method to 

discover the parameters associated with the current hardware system. In a fixed system this could be 

handled with static header files or kernel configuration at build time, but for many dynamic devices it 

is much more desirable to obtain the configuration information at run time. This is further 

complicated by the endless customization available on an FPGA, which would quickly result in an 

unmanageable number of possible kernel header and configuration combinations. 



AUDITOR  D2.2 Version 1.0 

 Page 45 (62) 

 

On a PC, the device information is supplied by the BIOS, but the ARM processors don’t have anything 

comparable. So the chosen solution is a device tree, also referred to as Open Firmware (abbreviated 

OF) or Flattened Device Tree (FDT). This is a text file which contains all the hardware information 

about the system, such as device addresses, interrupt vectors and bus addresses, compiled into byte 

code format. U‐boot copies the compiled data into a known address in the RAM before jumping to 

the kernel’s entry point. 

 

The last but not least task is the Linux kernel customization to support the custom peripherals 

required to access to the PL hardware accelerators (i.e. including the Xilinx AXI DMA driver). It usually 

requires rebuilding a custom the kernel from its sources. Both the main processor and the integrated 

peripherals manufacturers provide a public source code repository with the kernel customizations for 

its developer boards.  

 

Summarising, for the ZedBoard hardware developer platform we have identified the following stable 

configurations and firmware versions: 

Table 3.16: ZedBoard configurations and firmware versions 

 

Config #1 
(Analog Devices) 

Config #2 
(AD PL + Xilinx kernel) 

Mixed #1  
(AD PL + Xilinx Vivado 

auto Device Tree) 

PL FIRMWARE https://github.com/analog
devicesinc/hdl.git 
 
GIT TAG: 
origin/hdl_2014_r2 
 
Migrated to Vivado 2014.4 
and compiled with 2014.4 
(no problems found) 

https://github.com/analo
gdevicesinc/hdl.git 
 
GIT TAG: 
origin/hdl_2014_r2 
 
Migrated to Vivado 
2014.4 and compiled with 
2014.4 (no problems 
found) 

https://github.com/analo
gdevicesinc/hdl.git 
 
GIT TAG: 
origin/hdl_2014_r2 
 
Migrated to Vivado 
2014.4 and compiled 
with 2014.4 (no problems 
found) 

PS COMPILER CROSS_COMPILE=arm-
xilinx-linux-gnueabi- 
source 
/opt/Xilinx/Vivado/2015.2/
settings64.sh 

CROSS_COMPILE=arm-
xilinx-linux-gnueabi- 
source 
/opt/Xilinx/Vivado/2015.2
/settings64.sh 

CROSS_COMPILE=arm-
xilinx-linux-gnueabi- 
source 
/opt/Xilinx/Vivado/2015.
2/settings64.sh 

DEVICETREE Included in AD Kernel: 
/arch/arm/boot/dts/zynq‐
zed.dtsi 
/arch/arm/boot/dts/zynq.d
tsi 
make ARCH=arm zynq-zed-
adv7511.dtb 
cd arch/arm/boot/dts 
mv zynq-zed-adv7511.dtb 
devicetree.dtb 

Included in AD Kernel: 
/arch/arm/boot/dts/zynq‐
zed.dtsi 
/arch/arm/boot/dts/zynq.
dtsi 
make ARCH=arm zynq-
zed-adv7511.dtb 
cd arch/arm/boot/dts 
mv zynq-zed-adv7511.dtb 
devicetree.dtb 

Vivado 2014.4 SDK 
generated devicetree 
from new example 
project: 

 

http://www.wiki.xilinx.co
m/Build+Device+Tree+Bl
ob 

 

git://github.com/Xilinx/d
evice-tree-xlnx.git 

https://github.com/analogdevicesinc/hdl.git
https://github.com/analogdevicesinc/hdl.git
https://github.com/analogdevicesinc/hdl.git
https://github.com/analogdevicesinc/hdl.git
https://github.com/analogdevicesinc/hdl.git
https://github.com/analogdevicesinc/hdl.git
http://www.wiki.xilinx.com/Build+Device+Tree+Blob
http://www.wiki.xilinx.com/Build+Device+Tree+Blob
http://www.wiki.xilinx.com/Build+Device+Tree+Blob


AUDITOR  D2.2 Version 1.0 

 Page 46 (62) 

U-BOOT https://github.com/Xilinx/u
-boot-xlnx.git 
(master) 
(modified 
include/configs/zynq_zed.h 
to launch root fs from 
sdcard) 

https://github.com/Xilinx/
u-boot-xlnx.git 
(master) 
(modified 
include/configs/zynq_zed.
h to launch root fs from 
sdcard) 

https://github.com/Xilinx
/u-boot-xlnx.git 
(master) 
(modified 
include/configs/zynq_zed
.h to launch root fs from 
sdcard) 

KERNEL https://github.com/analog
devicesinc/linux.git 
GIT BRANCH: 
remotes/origin/xcomm_zy
nq_new_pcore_regmap 

https://github.com/Xilinx/
linux-xlnx.git 

 

git checkout tags/xilinx-
v2015.1 

AD Kernel 

ROOT 
SYSTEM 

UBUNTU 14.10 (utopic) 
ARMHF on EXT4 SDCARD 

UBUNTU 14.10 (utopic) 
ARMHF on EXT4 SDCARD 

UBUNTU 14.10 (utopic) 
ARMHF on EXT4 SDCARD 

Results ALL GOOD.  
Features:  

 ETH 
 USB 2.0 OTG 
 HDMI Display 
 AXI CDMA  

ALL GOOD.  
Features:  

 ETH 
 USB 2.0 OTG 
 HDMI Display 
 AXI CDMA 

ALL GOOD.  
Features:  

 ETH 
 USB 2.0 OTG 
 HDMI Display 
 AXI CDMA 

 

 Receiver configuration 3.4.4.2

All the receiver operating parameters are stored in the GNSS-SDR configuration file (see Section 

XXX_the_control_plane for more details on the available configuration options). Depending on the 

user requirements and on the embedded hardware platform resources, such as the available satellite 

channels and the desired GNSS observables output rate, different configuration files could be 

selected by the startup script. 

 Startup scripts and status monitoring 3.4.4.3

Once the Linux kernel is fully loaded, the receiver startup scripts are in charge of: 

 Initializing the OS communications: USB/CANBUS, NMEA, Ethernet/3G network 

 Configure and initialize the front-end 

 Launch GNSS-SDR 

 Launch RTKLIB/PVT solver 

In Debian-based systems, the so-called SystemV, init is the program which spawns all other 

processes. It runs as a daemon (a process that runs silently in background) and typically has Process 

ID (PID) 1. It is the parent of all processes. Its primary role is to create processes from a script stored 

in the file /etc/inittab file. The Runlevels in SystemV describe certain states (i.e. Runlevel 0 is halt 

state, 1 is Single user mode, and 6 is a rebooting state) 

All System V init scripts are stored in /etc/rc.d/init.d/ or /etc/init.d directory. These scripts are used 

to control the system startup and shutdown.  

The mandatory init script commands are: 

 Start 

 Stop 

 Restart 

https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/Xilinx/u-boot-xlnx.git
https://github.com/analogdevicesinc/linux.git
https://github.com/analogdevicesinc/linux.git
https://github.com/Xilinx/linux-xlnx.git
https://github.com/Xilinx/linux-xlnx.git


AUDITOR  D2.2 Version 1.0 

 Page 47 (62) 

The GNSS receiver platform will implement custom SystemV init scripts to automate the receiver 

startup process. The user interface can trigger a partial or a fully receiver restart just using a 

command line instruction from a SSH shell terminal session.  

In addition to the start and stop process, SystemV also provides service monitoring functionality. If 

the service is irresponsive or has suffered a crash, it is possible to configure an automatic restart. All 

the GNSS receiver restart events are recorded in a log file for further analysis. 

4. iBOGART Central Processing Facility (iBOGART Cloud)  

The Central Processing Facility will be located in the iBOGART Cloud, which will be implemented at 

UPC premises (see D2.1). The CPF will offer a passive service, computing and distributing WARTK 

corrections through the Internet to any potential AUDITOR users (mainly targeting South Europe) 

mainly based on L1 and L2 (or L2C) frequencies.  For this purpose, a unidirectional link from the CPF 

is needed to distribute the corrections to any interested AUDITOR user. 

 

The design of the Central Processing Facility is explained below in two main subsections: (1) the CPF 

real time implementation, including the SW modules and WARTK messages definition, and (2) the 

CPF messages dissemination, including how RTCM and NTRIP could be useful and also Bandwidth 

considerations.  

4.1 CPF real time implementation 

The software sets the required real-time environment to execute the WARTK CPF in true real-time 

conditions. For such a purpose, the software retrieves real-time GPS observables from different 

NTRIP data streams directly obtained using BKG’s BNC open source software 

(https://igs.bkg.bund.de/ntrip/download). Then, OB1 messages are generated in real-time 

continuously with the input data streams flow thanks to Linux pipe processes, it updates precise 

predicted orbit sets every 6h from IGS, generates real-time plots and provides additional features. 

 

The whole package consists of several main C-shell scripts (hereinafter CSH), some secondary C and 

FORTRAN programs and many AWK scripts, and requires some extra open software to be installed. 

Specifically it needs the following OpenSource applications: BNC, wget, gawk, gnuplot, 

GraphicsMagick command-line utilities, and Randomize Lines utility, among others. It has been 

designed to be 100% portable within different Linux machines, and it has been named WARTK-RT. In 

this way, we foresee that the integration in the Zynq Processing System will be feasible with few 

adjustments. 

4.1.1 Software structure 

WARTK-RT software components are allocated in different folders depending on their purpose. The 

main folders are the following ones: 

 <wartk-rt root>/bin/:  This directory contains all WARTK-RT related programs, binary code, 

source code and scripts of any nature. 

 <wartk-rt root>/dat/:  It contains static files, which are needed to run the software, such as 

antenna phase center definition file, a priori permanent station coordinates, GPS 

constellation status, leap seconds information. 

 <wartk-rt root>/input parameters/:  All configurable files are inside this directory. 



AUDITOR  D2.2 Version 1.0 

 Page 48 (62) 

 <wartk-rt root>/datasets/: This folder contains several databases automatically or time-to-

time created by WARTK-RT software, containing files downloaded from the Internet. It 

contains the SINEX, SP3, DCBs between C1 and P1 and troposphere information, among 

others. 

 <wartk-rt storage folder>/run/: Real time growing files are inside this folder. It mainly 

allocates real-time inputs, real-time outputs, and real-time log files. It contains three main 

folders, one named starting_up_bkg-ds to initialize, maintain and provide in the right format 

the GNSS observations gathered by BNC (NTRIP datastreams), the bkg_2_prefits to compute, 

in the same seamless stream, the prefit residuals after (and prefits_2_krigingVTEC, to derive 

real time ionospheric VTEC maps, not necessary in principle in this project, and allocated in 

the corresponding folder prefits_and_krigingVTEC_2_WARTK_Messages). 

 <wartk-rt root>/templates/: This directory contains gnuplot templates, which are necessary 

to build the real time plots, and namelists on multiple parameters the CSH scripts require. 

 

WARTK-RT software is structured in different CSH scripts which run different processes and 

subscripts in foreground and background mode, coordinately, in order to be able to run the WARTK-

CPF FORTRAN core.  

 

Once WARTK-RT is launched, real-time data flows in different directions, from different scripts and 

programs to others harmonically, and finally feeds WARTK-CPF core. An output message is 

continuously generated, and real-time plots are built. Figure 4.1 shows a diagram of the stable 

situation achieved when WARTK-RT software is running. 

 WARTK-RT CPF main components description 4.1.1.1

WARTK CPF can run either in real time or for a predefined interval of past days. As a first step, one 

must decide which station will be treated as reference station, which set of permanent stations 

should fix their phase range ambiguities (these must be within a certain range from the reference 

station), which permanent stations must be used in the computations (helping to the ionospheric 

model mainly) but will not fix their ambiguities, and finally which stations should be treated as rovers 

in certain critical aspects, as an autonomous CPF monitoring system to detect potential real-time 

failures. 

 

The software starts generating a grid of points defining the ionospheric voxel centers, and storing it 

into a file (c.pri). Then it continues gathering data for the previously selected set of stations. It 

downloads their observables in RINEX format (in the case of real time streams, they are gathered by 

means of BKG’s BNC), and also extracts their precise coordinates from an automatically downloaded 

SINEX file. The next step consists on downloading the corresponding ultrarapid predicted IGS orbit 

datasets. Then, it generates the WARTK CPF input messages2. With all these data, WARTK CPF can 

start the computing process, which should last from several hours in cold start before the starting of 

the service (to guarantee the convergence of the main system parameters) to many weeks in a 

seamless mode if needed. 

                                                           
2
 Known and named as messages1.input file or stream. 



AUDITOR  D2.2 Version 1.0 

 Page 49 (62) 

 

When the observations corresponding to a given time tag (for instance each 30 seconds) are all of 

them read in the datastream chain, the WARTK CPF processing generates new output messages3. 

WARTK CPF core 

The main WARTK CPF core is implemented considering the following two FORTRAN programs (see 

also Figure 4.1): 

 messages1input_2_prefits_v*.f 

 prefits_2_messages1output_v*.f 

These programs are the ones dealing with the computational load, and the ones that will also be 

used (and slightly modified) for AUDITOR real-time implementation. In brief, they are described 

below. 

 

On the one hand, messages1input_2_prefits script implements the required steps to compute GNSS 

prefit residuals. For such purpose, it is necessary to acquire and preprocess input data (such as GNSS 

observations, precise ephemeris and clocks), computing combinations of pseudorange/phase 

observables (such as the ionospheric-free, the geometry-free and the wide-lane combinations), and 

detect cycle slips, among other aspects. In order to derive the prefit residuals it is necessary to model 

to the required extent possible multiple terms affecting GNSS signals, including tides, wind up, orbits 

and clocks (interpolated to the time of reception), relativity corrections, Delay Code Biases, 

troposphere wet and dry delays, antenna phase center offsets, etc. It is also necessary to compute 

transmission and reception times and interpolate satellite clocks to the time of reception, among 

other features. These steps are carried out in real time through piped processes and the data are 

converted to the main output messages “PR2”, containing the prefit residuals for all the CPF receiver 

considered measurements, and additional internal messages (like the one called TI, or TI-CLASSIC) to 

easy the following steps in the processing chain. 

  

On the other hand, prefits_2_messages1output script implements the required steps to run TOMION 

ionospheric model and compute the WARTK messages. In this regard, it is necessary to run a Kalman 

filter (taking into account a process noise for each term to be modelled) to solve the navigation 

equations and derive the post-fit residuals as well as the partial TEC values for each ionospheric voxel 

in a two-shell tomographic modelling. The script is also responsible to apply double differences and 

derive double differenced postfit residuals, fixing or constraining WARTK-required ambiguities (Bc, Bi, 

Bwc), checking wrong ambiguity fixes and looking for small undetected cycle-slips within the 

messages1input_2_prefits script. It also computes the Dilution Of Precision (DOP) and can estimate 

ionospheric effective height (important for AUDITOR WP4). Within this script, we keep track of the 

reference receiver (s and rover-like receivers -if any; for testing purposes-). Furthermore, the STEC 

and dSTEC adjustment per satellite (together with the corresponding covariance matrix) are 

computed to be transmitted to the users as part of the WARTK DSM messages. 

 

It is also remarkable that this last script allows parallel running considering a number of CPUs.  

                                                           
3
 A file named messages1.output. 



AUDITOR  D2.2 Version 1.0 

 Page 50 (62) 

Last but not least, in both cases there are multiple tests to verify the correct execution of the scripts. 

In addition, the scripts allow carrying out tests considering independent stations for validation 

purposes.  

 

As a final remark, in AUDITOR it is not expected to initially modify these scripts very significantly.  The 

effort would be more focused at the user side, as described in Section 3.4.3. 

 WARKT-RT Inputs 4.1.1.2

The WARKT-RT software is fed by three types of different inputs depending on their required refresh 

rate: static inputs, semi-static inputs, and streamed and dynamic inputs. 

Static Inputs 

These inputs are defined during WARTK-RT software initialization and then remain constant during 

all the execution time. To launch the WARTK CPF in true real-time mode we need to define a set of 

options including the service area delimited in longitude and latitude (to select permanent GNSS 

stations in the area and potential reference stations), the types of receivers and their Antenna Phase 

Centers (APCs), among other information.  

 <wartk-rt root>/input_parameters/rover_like.sta:  This file must contain a list of stations. If 

available, these stations will be treated as rover-like users, specifically to test the main 

ionospheric corrections, and overall WARTK performance. thus WARTK-CPF will not use their 

observations to compute the corrections. Using independent rover-like stations is very useful 

to quickly check WARTK-CPF performance.  

 <wartk-rt root>/input_parameters/wartk-rt_var-setup: Setup file which contains all the 

configuration variables used by all WARTK-RT packages scripts. 

Once WARTK-RT software has been initialized, it creates all required CPF core static files in the run 

directory. These are the ones showed in Figure 4.1, some of them are: ant_info.abs.unix, c.pri, 

reference_receiver.sta, fixing_ambiguities.sta, rover_like.sta and to_estimate_coordinates.sta. 

 



AUDITOR  D2.2 Version 1.0 

 Page 51 (62) 

 

Figure 4.1: WARTK-RT software data flow diagram 

  



AUDITOR  D2.2 Version 1.0 

 Page 52 (62) 

 Semi-static Inputs 4.1.1.3

 

As WARTK-RT software is working in real-time conditions, the majority of the data inputs will be 

dynamically updated. However there are a set of inputs which require low update rates, these are 

the so-called semi-static inputs. The software user does not have to worry about these inputs 

because they are downloaded and updated automatically by the WARTK-RT software. 

Within this group, we can distinguish between three types of sources:  the GPS constellation status 

file, the SINEX files, and the RINEX files. 

 

 GPS constellation status file is updated every time WARKT-RT software is relaunched. It 

contains the PRN-to-SV dictionary and it is downloaded from the University of New 

Brunswick servers4 but it is in process of being updated to be gathered from the file 

containing the antenna phase center information, in ANTEX format. This file is adapted to 

WARTK core programs and stored in the run directory with the name: gpsconsstatus.lst 

 SINEX files contain information about GPS permanent station precise coordinates, in case it 

has not been computed recently by the same WARTK-RT software. These files are weekly 

generated by different providers. WARTK-RT software builds a local database with all 

downloaded SINEX files. The present version uses a pair of providers: CDDIS5 and BKG’s 

GNSS Data Center6, and it downloads one file (codXXXX7.snx.Z) from CDDIS, and three files 

(eurXXXXmr.snx.Z, nkgXXXX7.snx.Z and olgXXXX7.snx.Z) from BKG servers. Then, station 

precise coordinates are extracted and stored in sta_pos.tot file. With this information, the 

next step is to build the WARTK messages for the necessary stations. 

 RINEX files are known as a standard way to enclose GPS observable information. In addition, 

the RINEX headers have useful information that WARTK-CPF core requires. And at least one 

updated RINEX file is needed for each used station. WARTK-RT software also builds a RINEX 

database with all these files. It seeks necessary RINEX files mainly from the BKG NTRIP 

casters in case of real time mode of operation (and CDDIS and GARNER GNSS servers in case 

of post-process mode).  

WARTK-RT tries to download the newest versions of RINEX files, extracting their headers and 

generating three WARTK-CPF input messages: ANT, AND and WLF. They include antenna 

descriptions, antenna phase centers, and receiver wavelength factors for each GPS permanent 

station. 

 

All these inputs are called semi-static because their update status is not very critical. It is not crucial 

to use, for example, a five weeks old SINEX file because the precise coordinates of the stations within 

the file are taken as a priori guess (their value are refined, with an a priori variance of few 

centimetres, in the same CPF computation chain). All these files are updated once WARTK-RT 

                                                           
4
 http://gge.unb.ca/Resources/GPSConstellationStatus.txt 

5
 Crustal Dynamics Data Information System, http://cddisa.gsfc.nasa.gov 

6
 Bundesamt für Kartographie und Geodäsie, http://igs.bkg.bund.de 

http://gge.unb.ca/Resources/GPSConstellationStatus.txt
http://cddisa.gsfc.nasa.gov/
http://igs.bkg.bund.de/


AUDITOR  D2.2 Version 1.0 

 Page 53 (62) 

software is relaunched, and they stay typically static the rest of the time, but they might be 

“injected” on-the-fly at any time if needed. 

 Streamed and Dynamic Inputs 4.1.1.4

These are the true real-time inputs. If these inputs are not properly updated, the WARTK-CPF core 

might stop; so these are the most important inputs and should be checked continuously. This 

includes: (1) the new precise orbit sets must be transferred to the CPF every six hours, and (2) the 

real-time low latency observables that can be gathered from BKG’s NTRIP (at 1 Hz rate though 

downdated7 afterwards according to the user needs and machine CPU8 capabilities). 

 Ultrarapid Predicted Precise Orbits files are continuously generated by the IGS community, 

up to 24 hours in advance, and stored in IGU files (named iguXXXXD YY.sp3.Z, where XXXX 

stands for the GPS week, D for the day of the week (from 0 to 6) and YY for the issued hour). 

They are downloaded mainly from CDDIS servers, but if not available they can be 

automatically downloaded from alternative sites, such as GARNER. WARTK-RT software will 

automatically download the latest file version four times every day. For instance at: 3:10h, 

9:10h, 15:10h and 21:10h (UTC time). Then, the file format is slightly modified and a sp3c.lst 

file is created, so that the WARTK core knows that a new set of orbits is ready to be read. 

 Real-Time Observables. In this context, observables (L1, L2, P1, P2, C/A) of the selected GPS 

dual frequency receivers are gathered in real-time conditions with 1 Hz sampling rate from 

the BKG’s BNC. In normal conditions, WARTK-CPF can be connected up to more than 100 

GNSS receivers. Information coming from these streams must be downdated up to one 

epoch each 30s to assure WARTK-CPF performance is achieved. Nonetheless, higher time 

rates could be assessed. Furthermore, observations coming from different streams must be 

ordered and synchronized in sequential epochs. For this purpose an AWK script was 

designed. It is also important to say that these real-time streams are continuously checked by 

WARTK-RT software, a real-time global map is generated every 6 minutes showing which 

streams (locations) are working and which are down (see Figure 4.1). 

 

 WARTK-RT Outputs 4.1.1.5

WARTK-CPF core generates uninterruptedly one file named messages1.output which concentrates all 

CPF output messages. It contains many different messages, including the ionospheric model, the 

tropospheric estimation, the satellite clocks, and the rover-like navigation status, among others. 

This file is examined automatically every 15 minutes, and three sets of plots are depicted. A first plot 

shows the total ambiguity fixing performance, a second set of plots shows the performance of the 

double difference correction of STECs for each satellite, DDSTEC21, and a third set of plots draws X, Y 

and Z coordinates accuracy of each of the rover-like stations used for real-time screening of the CPF 

performance. 

 

                                                           
7
 Instead of sending observables every second, they can be sent every 30 second in order to avoid overloading 

the machine. 
8
 Central Processing Unit, main processor of a machine. 



AUDITOR  D2.2 Version 1.0 

 Page 54 (62) 

Furthermore, the real-time GPS observables streams are checked every six minutes, a stream-log file 

is generated, stopped streams are detected, and the whole behaviour is plotted on a map (see 

example in  Figure 4.1). 

At the end of the day, all relevant data, logs, input and output messages, plots and maps are 

automatically stored in the run folder, sorted by day.  

 

 WARTK correction message requirements 4.1.1.6

This section briefly describes the current WARTK user messages, which may evolve during the project 

to meet specific requirements on precision agriculture. For instance, it is currently being assessed the 

suitability of only transmitting messages on prefits mode in order to save bandwidth. 

 

4.1.1.6.1 “OB1” message: measurements of the nearest reference station 

The rover user should receive the observations OB1 message at a typical rate of 1 Hz, referring to the 

reference station to form the double differences. The OB1 message is obtained easily after a simple 

processing of the GNSS station observables. 

Reference station observations (such as the pseudoranges P1 or C/A and P2, as well as the carrier 

phases L1 and L2, in the case of GPS) can be obtained directly from a real-time datastream server 

through the Internet, in RINEX9 or RTCM3 format. Then, these observations are processed and 

converted to the non-standardized “OB1” message format (an internal format for WARTK 

processing). It is remarkable that this format is very useful because it contains information on the 

real-time occurrence of cycle slips (10). 

 

Table 4.1 shows all fields that an OB1 message must contain in the current implementation. 

Table 4.1: “OB1” message field description 

Field Parameter Meaning Format Examples 

1 type=OB1 The following parameters describe the 

measurements of one reference 

receiver (i.e. the nearest), including 

cycle-slip detection. 

3 Characters.   A3, 

1X 

OB1 (the only 

acceptable string) 

2 PRN Satellite number Integer, I2, 1X 1, 4, 15, 21 

3 year Year of the measurement Integer. I2.2, 1X 99, 00, 05, 06 

4 month Month of the measurement Integer. I2, 1X 1, 4, 10, 12 

5 day Day of the measurement Integer. I2, 1X 4, 19, 28, 31 

6 hour Hour of the measurement Integer. I2, 1X 5, 11, 19, 23 

                                                           
9
 Receiver INdependent EXchange, GNSS standard for raw measures. 

10
 Cycle slip: A discontinuity of an integer number of cycles in the measured (integrated) carrier phase resulting from a 
sudden loss-of-lock in the carrier tracking loop of a GNSS receiver. 



AUDITOR  D2.2 Version 1.0 

 Page 55 (62) 

7 minute Minute of the measurement Integer. I2, 1X 2, 23, 56, 59 

8 second Second of the measurement Float. F11.7, 1X 0.0000000, 

8.0000000, 

43.0000000 

9 refrec Reference receiver name String. A4, 1X lliv, ebre, plan 

10 ksat Kind of satellite. String. A1, 1X G (= GPS), R 

(=GLONASS). Etc 

11 epochflag Power failure between previous and 

current epoch or event flag. 

Integer (from   0   

to 6). I1 

0, 1, 5, 6 

12 recclock Receiver clock estimate (if available) Float. F12.9 0.000000000 

13 nobs Number of available observables. Integer. I6 0, 1, 4, 6 

...     

13 + i kobs(i) Kind of the i-th observable. 2 Characters. 4X, 

A2 

L1,  P2, C1, D1 

13+i+1 kobs(i+1) Kind of the i-th+1 observable. 2 Characters. 4X, 

A2 

L1, P2, C1, D1 

...     

14+2*nobs narch1 Number of continuous carrier-phase 

arch 

Integer, i5 1,2,...,19,... 

15+2*nobs Cycleslip Flag   indicating whether or not there is 

one cycle-slip. 

Logical, l1 .F., .T. 

 

 

Table 4.2: “OB1” message example 

OB1  11  08  1  30  11  46  30.0000000  ebre  G  0  0.000000000  4 L1 L2 P2 C1  

124026977.63649 96644386.00647 23601544.0234 23601547.6914 17 F 
 
 

4.1.1.6.2 “S3C” message: ultrarapid (predicted) IGS orbits 

Accurate predicted orbits and clocks information can be downloaded from IGS servers. IGS issues 

IGU11 files four times every day, with a delay of 3 hours. Every file has information on the satellite 

positions and clocks of the previous 24 hours and of the next 24 hours, sampled every 15 minutes. 

These files are published in IGS’ SP3 format. 

S3C message is obtained after a simple processing of the IGU files. This processing adds an orbit flag 

that informs whether an IGU satellite orbit set can be accepted by the user or not. This is because 

sometimes IGU predicted information is badly computed. In these cases, the user must use the 

common GPS broadcasted orbit parameters for the affected satellites (still useful in double-

difference precise positioning). 

                                                           
11

 Code that identifies IGS Ultrarapid orbit files 



AUDITOR  D2.2 Version 1.0 

 Page 56 (62) 

Table 4.3 shows all fields that an S3C message must contain in the current implementation. 

Table 4.3: “S3C” message field description 

Field Parameter Meaning Format Examples 

1 type=S3C The following parameters describe 

the ultrarapid precise IGS orbits 

3 Characters.   A3 S3C (the only 

acceptable string). 

2 PRN Satellite number Integer. 1X, I2 1, 4, 15, 21 

3 year Year of the measurement Integer. 1X, I2.2 99, 00, 05, 06 

4 month Month of the measurement Integer. 1X, I2 1, 4, 10, 12 

5 day Day of the measurement Integer. 1X, I2 4, 19, 28, 31 

6 hour Hour of the measurement Integer. 1X, I2 5, 11, 19, 23 

7 minute Minute of the measurement Integer. 1X, I2 2, 23, 56, 59 

8 second Second of the measurement Float. 1X, F11.8 0.00000000 

9 x Satellite’s x-axis coordinate Float. 1X, F13.6 -24730.078897, -

21724.190244 

10 y Satellite’s y-axis coordinate Float. 1X, F13.6 6340.852653,  -

8418.584775 

11 z Satellite’s z-axis coordinate Float. 1X, F13.6 -7248.582843, -

12629.254112 

12 dt Satellite’s clock error Float. 1X, F13.6 389.055848157, 

32.218068 

13 orbflag Orbital information flag Integer. 1X, I2 (possible 

values: 0/1) 

0, 1 

 
 

Table 4.4: “S3C” message example 

S3C 1 08 1 29 6 0 0.00000000 16418.552828 

-19056.394552  8632.355341  181.568916  0 

4.1.1.6.3 “DSM” message: Total Electron Content adjustment performed independently for each 

satellite 

WARTK CPF generates a wide variety of messages. One of them contains information about 

ionospheric status. This ionospheric information is compacted in a slant ionospheric model per 

satellite, and stored in DSMs messages. This is typically slightly better in Wide Area scenarios than 

broadcasting 3D ionospheric grid values, with an implicit mitigation of the mapping function errors, 

for distances up to several hundreds of kilometres, among other advantages. 

 



AUDITOR  D2.2 Version 1.0 

 Page 57 (62) 

These messages are indispensable for the rover user. With them the user WARTK receiver can build 

its own STEC values through interpolation, and get a prompt precise guess of the ambiguities of both 

carrier phases. DSM messages can be broadcasted each minute (usually enough) or at higher rates if 

needed. 

Table 4.5 shows all fields that a DSM message must contain in the current implementation. 

 

Table 4.5: “DSM” message field description 

Field Parameter Meaning Format Examples 

1 type=DSM The following parameters 

describe the final adjustment 

of the total electron content, 

independently performed per 

each satellite 

3 Characters.  A3 DSM (the only 

acceptable string) 

2 iprn1 Satellite number Integer. 1X, I2 1, 4, 15, 21 

3 iyy0 Year of the measurement Integer. 1X, I2.2 99, 00, 05, 06 

4 imo0 Month of the measurement Integer. 1X, I2 1, 4, 10, 12 

5 ida0 Day of the measurement Integer. 1X, I2 4, 19, 28, 31 

6 iho0 Hour of the measurement Integer. 1X, I2 5, 11, 19, 23 

7 imi0 Minute of the measurement Integer. 1X, I2 2, 23, 56, 59 

8 sec0 Second of the 

measurement 

Float. F11.7 17.0000000, 

49.0000000 

9 ndstec Number of receivers involved 

in the adjustment 

Integer. 1X, I3 3, 5, 9, 10 

10 rms postfit STEC Postfit RMS Float. 1X, F9.4 0.00189, 0.00708, 

0.00438 

11 bias postfit STEC Postfit Bias Float. 1X, F9.4 0.00189, 0.00708, 

0.00438 

12 chi2 STEC Postfit Chi squared. Float. 1X, E14.6 0.326456D+00, 

0.152913D+01 

13 nunk dstec Number  of  unknowns 

involved in the adjustment 

Integer I3 2, 4 

... ... ... ... ... 

12 + 2*i x dstec(i) I-th  adjustment parameter Float. 1X, F10.5 -0.02916 

13 + 2*i St dev 

dstec(i) 

Standard  deviation of i-th ad- 

justment parameter 

Float. 1X, F12.7 0.666E-01, 

0.451E-01. 



AUDITOR  D2.2 Version 1.0 

 Page 58 (62) 

12+2*(i+1) x dstec(i+1) I-th + 1 adjustment 

parameter 

Float. 1X, F10.5 0.11884, 

0.00560 

13+2*(i+1) st dev  

dstec(i+1) 

Standard  deviation  of  i-th  + 

1 adjustment parameter 

Float. 1X, F12.7 0.838E-01, 0.517E-

01. 

... ... ... ... ... 

14+2*nunk 

dstec 

refrec Reference receiver character 

id. 

4 characters. X, a brus 

15+2*nunk 

dstec 

irefrec Reference receiver integer id. Integer, 1x,i3 1,5,23,... 

16+2*nunk 

dstec 

ra refrec Right Ascension of   the   IPP   

of the ref. receiver 

observation for the given 

satellite. 

Float. F12.6 119.637337, 

130.848918 

17+2*nunk 

dstec 

dec refrec Latitude  of  the IPP of the 

reference receiver 

observation for the 

Float. F12.6 29.751108, 

43.952362, 

32.882576 

18+2*nunk 

dstec 

stec refrec Slant Total Electron Content 

of the reference receiver. 

Float. 1X, F10.4 2.5540, 0.8460, 

2.6961. 

19+2*nunk 

dstec 

sigma stec 

refrec 

Standard deviation (formal 

error) corresponding to the 

Slant Total Electron Content 

Reference. 

Float. 1X, F10.5 0.09772, 1.62279, 

0.76316. 

20+2*nunk 

dstec 

vtec1 refrec Vertical Total  Electron 

Content reference 

receiver 

Float. 1X, F10.5 2.5540, 0.8460, 

2.6961. 

21+2*nunk 

dstec 

iprnref Reference  satellite PRN Integer, 1X,I2 12,23,7,... 

22+2*nunk 

dstec 

sele0 Elevation over spherical 

horizon  

Float. F8.3 11.196, 38.154, 

81.151. 

23+2*nunk 

dstec 

adjusting 

tec 

instead of 

dtec 

Whether adjusting zero-

differenced TEC instead of 

the single difference referred 

to the reference receiver 

observation (per each 

satellite, and performed 

independently). 

Logical, 

1X, L1 

.T. 

24+2*nunk 

dstec 

adjusting 

dvtec 

instead of 

Whether adjusting zero-

differenced TEC instead of 

the single difference referred 

Logical, 

1X, L1 

.F. 



AUDITOR  D2.2 Version 1.0 

 Page 59 (62) 

 

Table 4.6: “DSM” message example 

DSM 8 08 1 29 23 57 45.0000000 16 0.0298 -0.0004 0.158224E+02  6 
 0.1454827E+01  0.3548E-02  -0.2400633E-01 
 0.1402E-02 -0.6604203E-01 0.9057E-03 0.2740417E-02 
 0.5688E-03 -0.8131125E-02 0.2512E-03 0.9116094E-02 
 0.5684E-03 karl 1 148.523000 50.541000 1.4398 0.0063 
 0.7318  26  22.530  T  F  2008  29  86265.00  54494.998437 

 

 WARTK CPF messages dissemination: FTP/RTCM 4.1.1.7

Regarding WARTK messages dissemination, it must be remarked that presently there is not a well-

defined RTCM standard capable to enclose all information that WARTK CPF needs to provide to the 

rovers. Therefore, the possibility to send the messages in textual ASCII format via datastream or FTP 

is considered necessary and taken as the baseline. In this way, we make sure they are not 

contaminated by any means due to any encapsulation limit on accuracy. Nonetheless, RTCM 3.2 

standard is expected to soon cover such needs thanks to the so-called State Space Representation 

(SSR) new set of messages to move towards RTK-PPP (see deliverable D1.2) allowing the distribution 

of precise orbits, precise clock bias (first stage of SSR messages already completed and documented 

in the current RTCM 3.2 specifications), a VTEC ionospheric model in spherical harmonics (second 

stage, message 1264; not documented in the specifications) and, in the near future, STEC messages 

(third stage; not supported). In this way, it will be assessed the use of RTCM to the extent possible. 

It is worth mentioning that RTCM’s VTEC SSR messages can already be decoded by using BKG’s BNC. 

The following information is directly extracted from BNC’s help manual and shall be considered 

confidential.  

Table 4.7: Example for block 'VTEC' carrying ionospheric corrections 

> VTEC 2015 06 17 11 43 35.0 6 1 CLK93 
 1  6  6   450000.0 
   17.6800     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000 
    4.5200     8.8700     0.0000     0.0000     0.0000     0.0000     0.0000 

dstec to the reference receiver 

observation (per each 

satellite, and performed 

independently). 

25+2*nunk 

dstec 

iyear0 4-digit year Integer. 1X,I4 2016 

26+2*nunk 

dstec 

Idoy0 3-digit day of year Integer. 1X,I3 286 

27+2*nunk 

dstec 

tsecday0 5-digit second of day Float. 1X,F8.2  

 

43200.00 

28+2*nunk 

dstec 

tdjmobs0 GPS Time in Modified Julian 

days 

Float. 1X,F12.6  54020.055556 



AUDITOR  D2.2 Version 1.0 

 Page 60 (62) 

   -4.6850    -0.3050     1.1700     0.0000     0.0000     0.0000     0.0000 
   -2.2250    -1.3900    -1.0250    -0.1300     0.0000     0.0000     0.0000 
    0.8750    -0.3800     0.2700    -0.1300     0.0400     0.0000     0.0000 
    1.2150     0.9050    -1.0100     0.3700    -0.1450    -0.2450     0.0000 
   -0.8200     0.4850     0.2300    -0.1750     0.3400    -0.0900    -0.0400 
    0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000 
    0.0000    -0.0700     0.0000     0.0000     0.0000     0.0000     0.0000 
    0.0000     0.5800    -1.4150     0.0000     0.0000     0.0000     0.0000 
    0.0000    -0.6200    -0.1500     0.2600     0.0000     0.0000     0.0000 
    0.0000     0.0700    -0.0900    -0.0550     0.1700     0.0000     0.0000 
    0.0000     0.5000     0.3050    -0.5700    -0.5250    -0.2750     0.0000 
    0.0000     0.0850    -0.4700     0.0600     0.0700     0.1600     0.0400 
 
The second record in this block provides four parameters: 
    Layer number 
    Maximum degree of spherical harmonics 
    Maximum order of spherical harmonics 
    Height of ionospheric layer [m] 
 
Subsequent records in this block provide the following information: 
    Spherical harmonic coefficients C and S, sorted by degree and order (0 to maximum) 

 

In this context, note that the possibility to use VTEC SSR message may imply a limited accuracy for 

the dissemination of WARTK messages, due to the spherical harmonic implementation and since the 

number of decimals would be limited by the format. 

Regarding RTKLIB’s RTCM support, there are routines that allow RTCM encoding (rtcm3e.c) and 

decoding (rtcm3.c). Then, in case transmitting WARTK messages in RTCM-like format, it would be 

needed to modify such routines so that the messages are correctly supported by RTKLIB.  

 

  

 

  



AUDITOR  D2.2 Version 1.0 

 Page 61 (62) 

5. Conclusion 

In this document internal specification for the different hardware/software subsystems that are part 

of the AUDITOR GNSS receiver have been detailed. Several physical and logical interfaces have been 

also described between the different elements described. This deliverable provided an initial 

overview of the architecture and multiple subsections describing the flow of the GNSS data from the 

antennas to the final post processed positioning data. 

The custom RF front-end (FE) details have been presented its main electrical components, 

configuration parameters, physical interfaces and data acquisition parameters. 

The processing platform has been detailed divided into its processing logic (PL or FPGA) and 

processing system (PS or ARM). The PL receiver the front-end data samples and provides low level 

real time processes to feed data to the PS subsystem through the AXI bus. 

The processing logic embed a set of low level processes which implement adapters, buffers, 

correlators, hardware accelerators and signal tracking. These configurable elements transform the 

raw GNSS data samples into a continuous pre-processed GNSS data stream.  

The processing system runs a Linux distribution which supports the core of the AUDITOR GNSS 

algorithms. One of the key libraries that will be included in the PS is the open-source GNSS-SDR 

which provided a complex GNSS data computer with several configurable abstraction layers. The 

core elements of this library and its relation to the processing of the AUDITOR GNSS data have been 

included as well as its integration with a PVT solver based on the RTKlib.  

Finally the iBOGART cloud platform has been referenced by describing its main messages types and 

formats that need to be used via a remote TCP/IP connection to obtain the ionospheric data 

corrections.   



AUDITOR  D2.2 Version 1.0 

 Page 62 (62) 

6. References 

 

[1]  AUDITOR-D2.1 Architecture definition.  

[2]  C. Fernández-Prades, J. Arribas y P. Closas, «Accelerating GNSS Software Receivers,» de Proc. of 

the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation 

(ION GNSS+), Portland, OR, 2016.  

[3]  Xilinx, «Zynq-7000 All Programmable SoC Overview - Product Specification,» San José, CA, 2016. 

[4]  Digilent, «Digilent Pmod Interface Specification,» Pullman, WA, 2011. 

[5]  J. J. J. S. O. C. Hernández-Pajares M., «Application of ionospheric tomography to real-time GPS 

carrier-phase ambiguities resolution, at scales of 400-1000 km and with high geomagnetic 

activity,» Geophysical Research Letters, vol. 27(13), pp. 2009-2012, 2000.  

[6]  ARM, «AMBA AXI and ACE Protocol Specification,» 2011. 

[7]  AUDITOR-D1.1 State of the Art.  

[8]  AUDITOR-D1.2 Requirement definition.  

[9]  AUDITOR-D1.3 Test definition.  

[10]  GNSS-SDR project: http://gnss-sdr.org/.  

 

 


